\(\sqrt{35}+\sqrt{15}\) với 10

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

Ta có :

\(\sqrt{35}+\sqrt{15}< \sqrt{36}+\sqrt{16}\)

\(\Rightarrow\sqrt{35}+\sqrt{15}< 6+4=10\)

Vậy \(\sqrt{35}+\sqrt{15}< 10\)

20 tháng 11 2017

Ta có: \(\sqrt{35}+\sqrt{15}< \sqrt{36}+\sqrt{16}=6+4=10\)

\(\Rightarrow\sqrt{35}+\sqrt{15}< 10\)

15 tháng 7 2019

\(\sqrt{35}< \sqrt{36}=6,\)

\(\sqrt{15}< \sqrt{16}=4\)

\(\Rightarrow\sqrt{35}+\sqrt{15}< 6+4=10\)

10 tháng 11 2016

ta có ; \(\sqrt{35}=\sqrt{10}+\sqrt{15}+\)\(\sqrt{5}\)

mà : \(\sqrt{5}< \sqrt{10};\sqrt{10}< \sqrt{25};1< \sqrt{5}\)

\(\Rightarrow\sqrt{35}>\sqrt{5}+\sqrt{10}+1\)

10 tháng 11 2016

Bài này tớ lấy căn bậc tận cùng luôn :

Căn bậc tận cùng của tất cả các số đều là 1 ; Vậy ta rút gọn biểu thức trên là :
 1 + 1 + 1 và 1

Vậy đương nhiên 1 + 1 + 1 > 1

Vậy :

\(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)

21 tháng 10 2016

a)\(\sqrt{4}+\sqrt{14}=5,741657387\)

\(\sqrt{18}\)=4,242640687

->vay: dien dau >

b)\(\sqrt{15}+\sqrt{16}+\sqrt{17}+\sqrt{18}=16,23872966\)

\(\sqrt{90}=9,486832981\)

->vay : điền dấu <

21 tháng 10 2016

a)\(\sqrt{4}+\sqrt{14}\) và \(\sqrt{18}\)

ta có : \(\sqrt{18}=\sqrt{14}+\sqrt{4}\)

suy ra : \(\sqrt{4}+\sqrt{14}=\sqrt{18}\)

b)\(\sqrt{15}+\sqrt{16}+\sqrt{17}+\sqrt{12}\)với \(\sqrt{90}\)

ta có :\(\sqrt{90}=\sqrt{20}+\sqrt{20}+\sqrt{20}+\sqrt{30}\)

mà :\(\sqrt{20}>\sqrt{15};\sqrt{20}>\sqrt{16};\sqrt{20}>\sqrt{17};\sqrt{30}>\sqrt{12}\)

suy ra :\(\sqrt{90}\)lớn hơn

21 tháng 10 2016

voi ="<"

27 tháng 6 2017

Ta có: \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\) (1)

\(\sqrt{65}-1>\sqrt{64}-1=8-1=7\) (2)

Từ (1) và (2) suy ra \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

10 tháng 12 2016

b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)

Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)

Từ biểu thức (1) và biểu thức (2)

=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)

 

14 tháng 10 2018

Ta có : \(\sqrt{61-35}=\sqrt{26}>\sqrt{25}=5\)(1)

           \(\sqrt{61}-\sqrt{35}< \sqrt{64}-\sqrt{36}=8-6=2\)(2)

Từ (1) và (2) ta được :  \(\sqrt{61-35}>5>2>\sqrt{61}-\sqrt{35}\)

\(\Rightarrow\sqrt{61-35}>\sqrt{61}-\sqrt{35}\)