Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này dễ lắm
Câu 1
\(-\sqrt{5}\) lớn hơn \(-2\) . Vì
\(-\sqrt{5}=-2,2236067977\)
\(-2=-2\)
Câu 2
\(\sqrt{2}+\sqrt{3}\) bé hơn \(\sqrt{10}\) . Vì
\(\sqrt{2}+\sqrt{3}=3,146264\)
\(\sqrt{10}=3,16227766\)
Câu 3
\(8\) lớn hơn \(\sqrt{15}+\sqrt{17}\)
\(8=8\)
\(\sqrt{15}+\sqrt{17}=7,996088972\)
Vt=\(\sqrt{2}+\sqrt{3}\)
=>\(vt^2\)=\(\left(\sqrt{2}+\sqrt{3}\right)^2\)=\(2+2\sqrt{6}+3=5+2\sqrt{6}=5+\sqrt{24}\)
Vp=\(\sqrt{10}\)
\(Vp^2=\left(\sqrt{10}\right)^2=5+5=5+\sqrt{25}\)
vì \(\sqrt{25}>\sqrt{24}\)
=>\(\sqrt{10}^2>\left(\sqrt{2}+\sqrt{3}\right)^2\)
=>\(\sqrt{10}>\sqrt{2}+\sqrt{3}\)
\(\frac{1+\sqrt{3}}{\sqrt{3}-1}=\frac{\left(1+\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=2+\sqrt{3}\)
\(\frac{2}{\sqrt{2}-1}=\frac{2\sqrt{2}+2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}+2=\sqrt{8}+2\)
\(\Rightarrow\frac{2}{\sqrt{2}-1}>\frac{1+\sqrt{3}}{\sqrt{3}-1}\)
a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)
\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)
Vì \(\sqrt{24}< \sqrt{25}\)
=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)
b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)
\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)
=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)
c/ \(16=\sqrt{16^2}\)
\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)
=> \(16>\sqrt{15}.\sqrt{17}\)
d/\(8^2=64=32+32=32+2\sqrt{256}\)
\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)
=> \(8>\sqrt{15}+\sqrt{17}\)
\(\sqrt{3\sqrt{2}}=\sqrt{\sqrt{3^2\cdot2}}=\sqrt{\sqrt{18}}\)
\(\sqrt{2\sqrt{3}}=\sqrt{\sqrt{2^2\cdot3}}=\sqrt{\sqrt{12}}\)
từ trên ta suy ra
\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Có \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2}\sqrt{3}=5+\)\(\sqrt{24}\)
\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)
Vì \(\sqrt{24}< \sqrt{25}\)
Nên \(5+\sqrt{24}< 5+\sqrt{25}\)
Hay \(\left(\sqrt{2}+\sqrt{3}\right)^2< \left(\sqrt{10}\right)^2\)
Vậy \(\sqrt{2}+\sqrt{3}< \sqrt{10}\)(vì\(\sqrt{2}+\sqrt{3},\sqrt{10}>0\))