\(\sqrt{2}+\sqrt{3}\) và\(\sqrt{10}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Có \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2}\sqrt{3}=5+\)\(\sqrt{24}\)

\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)

Vì \(\sqrt{24}< \sqrt{25}\)

Nên \(5+\sqrt{24}< 5+\sqrt{25}\)

Hay \(\left(\sqrt{2}+\sqrt{3}\right)^2< \left(\sqrt{10}\right)^2\)

Vậy \(\sqrt{2}+\sqrt{3}< \sqrt{10}\)(vì\(\sqrt{2}+\sqrt{3},\sqrt{10}>0\))

3 tháng 7 2017

Bài này dễ lắm

Câu 1

\(-\sqrt{5}\) lớn hơn \(-2\) . Vì 

\(-\sqrt{5}=-2,2236067977\) 

\(-2=-2\) 

Câu 2

\(\sqrt{2}+\sqrt{3}\) bé hơn \(\sqrt{10}\) . Vì

\(\sqrt{2}+\sqrt{3}=3,146264\)

\(\sqrt{10}=3,16227766\) 

Câu 3

\(8\) lớn hơn \(\sqrt{15}+\sqrt{17}\) 

\(8=8\)

\(\sqrt{15}+\sqrt{17}=7,996088972\)

17 tháng 7 2017

Vt=\(\sqrt{2}+\sqrt{3}\)

=>\(vt^2\)=\(\left(\sqrt{2}+\sqrt{3}\right)^2\)=\(2+2\sqrt{6}+3=5+2\sqrt{6}=5+\sqrt{24}\)

Vp=\(\sqrt{10}\)

\(Vp^2=\left(\sqrt{10}\right)^2=5+5=5+\sqrt{25}\)

vì \(\sqrt{25}>\sqrt{24}\)

=>\(\sqrt{10}^2>\left(\sqrt{2}+\sqrt{3}\right)^2\)

=>\(\sqrt{10}>\sqrt{2}+\sqrt{3}\)

17 tháng 7 2017

Mình mới học lớp 7 nhưng mình nghĩ là dấu < đó bạn

18 tháng 10 2019

Căn bậc haiCăn bậc hai

ta có

18 tháng 7 2017

1.>

2.<

3.>

4.<

6 tháng 6 2019

\(\frac{1+\sqrt{3}}{\sqrt{3}-1}=\frac{\left(1+\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=2+\sqrt{3}\)

\(\frac{2}{\sqrt{2}-1}=\frac{2\sqrt{2}+2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}+2=\sqrt{8}+2\)

\(\Rightarrow\frac{2}{\sqrt{2}-1}>\frac{1+\sqrt{3}}{\sqrt{3}-1}\)

27 tháng 6 2017

\(\sqrt{12}-\sqrt{11}\)   bé hơn \(\sqrt{11}-\sqrt{10}\) 

14 tháng 8 2016

a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)

\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)

Vì \(\sqrt{24}< \sqrt{25}\)

=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)

b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)

\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)

=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)

c/ \(16=\sqrt{16^2}\)

\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)

=> \(16>\sqrt{15}.\sqrt{17}\)

d/\(8^2=64=32+32=32+2\sqrt{256}\)

\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)

=> \(8>\sqrt{15}+\sqrt{17}\)

 

 

 

14 tháng 8 2016

khó hiểu quá bn ơi

29 tháng 8 2017

\(\sqrt{3\sqrt{2}}=\sqrt{\sqrt{3^2\cdot2}}=\sqrt{\sqrt{18}}\)

\(\sqrt{2\sqrt{3}}=\sqrt{\sqrt{2^2\cdot3}}=\sqrt{\sqrt{12}}\)

từ trên ta suy ra

\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)