K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Vì căn bậc 2 của 23 < căn bậc 2 của 25=5^2

căn bậc 2 của 15 <căn bậc 2 của 16=4^2

mà căn bậc 2 của 91 > căn bậc 2 của 81=9^2

Vậy căn bậc 2 của 91 > căn bậc 2 của 23 + căn bậc 2 của 15

11 tháng 8 2017

\(\sqrt{23}+\sqrt{15}=8,66881487\)

\(\sqrt{91}=9,539392014\)

Vậy: \(\sqrt{23}+\sqrt{15}< \sqrt{91}\)

a: \(324=48+276=48+\sqrt{76176}>48+\sqrt{120}\)

nên \(\sqrt{48+\sqrt{120}}< 18\)

b: \(\left(\sqrt{23}+\sqrt{15}\right)^2=38+2\cdot\sqrt{345}\)

\(\left(\sqrt{91}\right)^2=91=38+53=38+\sqrt{2809}\)

mà \(2\sqrt{345}< \sqrt{2809}\)

nên \(\sqrt{23}+\sqrt{15}< \sqrt{91}\)

12 tháng 11 2017

a) Ta có: \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}\)

Vì \(\sqrt{16}>\sqrt{14};\sqrt{33}>\sqrt{29}\)

\(\Rightarrow4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)

b) Ta có: \(\sqrt{23}+\sqrt{15}< \sqrt{25}+\sqrt{16}=5+4=9=\sqrt{81}\)

1 tháng 11 2015

4 > căn 14 , căn 33 > căn 29

=> 4+ căn 33 > căn 29 + căn 14

3 tháng 8 2023

\(A=\sqrt[]{50}+\sqrt[]{65}\Rightarrow A^2=50+65+2\sqrt[]{50.65}=115+2\sqrt[]{5.10.5.13=}115+10\sqrt[]{130}\left(1\right)\)

\(B=\sqrt[]{15}+\sqrt[]{115}\Rightarrow B^2=15+115+2\sqrt[]{15.115}=15+115+2\sqrt[]{3.5.5.23}=15+115+10\sqrt[]{69}\left(2\right)\)Ta có  \(10\sqrt[]{130}< 10\sqrt[]{69.2}=10\sqrt[]{2}\sqrt[]{69}< 15+10\sqrt[]{69}\left(3\right)\)

\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow A^2< B^2\Rightarrow A< B\)

\(\Rightarrow\sqrt[]{50}+\sqrt[]{65}< \sqrt[]{15}+\sqrt[]{115}\)

3 tháng 8 2023

So sánh gì thế em, em nhập đủ đề vào hi

20 tháng 9 2021

\(\sqrt{3}+\sqrt{15}< \sqrt{5}+\sqrt{16}=\sqrt{5}+4\)

a: \(\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\)

\(\left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

mà \(-2\sqrt{105}>-2\sqrt{120}\)

nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

b: \(\left(\sqrt{2}+\sqrt{8}\right)^2=10+2\cdot4=16=12+4\)

\(\left(3+\sqrt{3}\right)^2=12+6\sqrt{3}\)

mà \(4< 6\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{8}< 3+\sqrt{3}\)