Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Easy
Ta có:
\(\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
Tương tự cũng có: \(\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
Dễ thấy: \(\sqrt{2005}+\sqrt{2006}< \sqrt{2007}+\sqrt{2008}\)
\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
Easy
Ta có:
\(\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
Tương tự cũng có: \(\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
Dễ thấy: \(\sqrt{2005}+\sqrt{2006}< \sqrt{2007}+\sqrt{2008}\)
\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
Ta có : \(\sqrt{2006}-\sqrt{2005}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Mà : \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}-\sqrt{2006}}\)
Nến : \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)
\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)
Áp dụng \(\sqrt{\frac{a+b}{2}}>\frac{\sqrt{a}+\sqrt{b}}{2}\) được \(\sqrt{\frac{2007+2005}{2}}>\frac{\sqrt{2005}+\sqrt{2007}}{2}\Rightarrow2\sqrt{2006}>\sqrt{2005}+\sqrt{2007}\)
\(A=\sqrt{2005}+\sqrt{2007}\Rightarrow A^2=\left(\sqrt{2005}+\sqrt{2007}\right)^2=2005+2007+2\sqrt{2005\cdot2007}=4012+2\sqrt{\left(2006-1\right)\left(2006+1\right)}=4012+2\sqrt{2006^2-1}\)
\(B=2\sqrt{2006}\Rightarrow B^2=\left(2\sqrt{2006}\right)^2=4\cdot2006=2\cdot2006+2\cdot2006=4012+2\sqrt{2006^2}\)
Ta thấy \(4012=4012\) và \(\sqrt{2006^2-1}< \sqrt{2006^2}\)
nên \(A^2< B^2\)\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)
\(\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\)
\(\sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)
Mà \(\sqrt{2004}+\sqrt{2003}< \sqrt{2006}< \sqrt{2005}\)
\(\Rightarrow\dfrac{1}{\sqrt{2004}+\sqrt{2003}}>\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\Rightarrow\sqrt{2004}-\sqrt{2003}>\sqrt{2006}-\sqrt{2005}\)
a/ giả sử \(\sqrt{7}-\sqrt{2}< 1\)
\(\Leftrightarrow\sqrt{7}< 1+\sqrt{2}\)
\(\Leftrightarrow 7< 1+2\sqrt{2}+2\)
\(\Leftrightarrow4< 2\sqrt{2}\Leftrightarrow16< 8\left(sai\right)\)
vậy \(\sqrt{7}-\sqrt{2}>1\)
câu b, c bạn làm tương tụ nhé , giả sử một đẳng thức tạm, sau đó bình phương lên rồi làm theo như trên là được nha
Bài này cũng dễ
a, \(\sqrt{7}-\sqrt{2}\) lớn hơn \(1\) . Vì
\(\sqrt{7}-\sqrt{2}=1,231537749\)
\(1=1\)
b, \(\sqrt{8}+\sqrt{5}\) bé hơn \(\sqrt{7}+\sqrt{6}\) . Vì
\(\sqrt{8}+\sqrt{5}=5,064495102\)
\(\sqrt{7}+\sqrt{6}=5,095241054\)
c, \(\sqrt{2005}+\sqrt{2007}\) lớn hơn \(\sqrt{2006}\) . Vì
\(\sqrt{2005}+\sqrt{2007}=89,57677992\)
\(\sqrt{2006}=44,78839135\)
\(\sqrt{2007}-\sqrt{2006}=\frac{\sqrt{2007}-\sqrt{2006}}{2007-2006}=\frac{\sqrt{2007}-\sqrt{2006}}{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}\)
\(=\frac{1}{\sqrt{2007}+\sqrt{2006}}< \frac{1}{\sqrt{2006}+\sqrt{2006}}=\frac{1}{2\sqrt{2006}}\)
Vậy \(\sqrt{2007}-\sqrt{2006}< \frac{1}{2\sqrt{2006}}\)
Bạn áp dùng biểu thức liên hợp là được
Ta có :
\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)(1)
\(\frac{1}{2\sqrt{2006}}=\frac{1}{\sqrt{2006}+\sqrt{2006}}\)(2)
Từ (1)(2)=>\(\frac{1}{\sqrt{2007}+\sqrt{2006}}< \frac{1}{\sqrt{2006}+\sqrt{2006}}\)
\(\Rightarrow\sqrt{2007}-\sqrt{2006}>\frac{1}{2\sqrt{2006}}\)
lấy vế đầu trừ vế sau nếu kết quả dương suy ra vế đầu lớn hơn nếu kq âm thì vế sau lớn hơn
có\(\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}\)\(=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
có\(\sqrt{2005}-\sqrt{2004}=\frac{\left(\sqrt{2005}-\sqrt{2004}\right)\left(\sqrt{2005}+\sqrt{2004}\right)}{\sqrt{2005}+\sqrt{2004}}\)\(=\frac{1}{\sqrt{2005}+\sqrt{2004}}\)
ta lại có 2006>2005\(\Rightarrow\sqrt{2006}>\sqrt{2005}\)có 2005>2004\(\Rightarrow\sqrt{2005}>\sqrt{2004}\)
\(\Rightarrow\sqrt{2006}+\sqrt{2005}>\sqrt{2005}+\sqrt{2004}\)\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}< \frac{1}{\sqrt{2005}+\sqrt{2004}}\)
\(\Rightarrow\sqrt{2006}-\sqrt{2005}>\sqrt{2005}-\sqrt{2004}\)
\(b,\) Ta có:
\(\dfrac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\\ =\dfrac{1}{\sqrt{n}.\sqrt{n-1}\left(\sqrt{n}+\sqrt{n-1}\right)}\\ =\dfrac{\sqrt{n}}{\sqrt{n}.\sqrt{n-1}}-\dfrac{\sqrt{n-1}}{\sqrt{n}.\sqrt{n-1}}\\ =\dfrac{1}{\sqrt{n-1}}-\dfrac{1}{\sqrt{n}}\)
Thay:
\(n=2\) \(\Leftrightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}=\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\)
\(n=3\Leftrightarrow\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)
\(...\)
\(n=2007\Leftrightarrow\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}=\dfrac{1}{\sqrt{2006}}-\dfrac{1}{\sqrt{2007}}\\ \)
\(\left(\sqrt{2005}+\sqrt{2007}\right)^2=4012+2\sqrt{2005.2007}\)
\(=4012+2\sqrt{\left(2016-1\right)\left(2016+1\right)}=4012+2\sqrt{2016^2-1}\)
\(\left(2\sqrt{2006}\right)^2=4012+4012=4012+2\sqrt{2016^2}\)
=>\(\left(\sqrt{2015}+\sqrt{2017}\right)^2< \left(2\sqrt{2016}\right)^2\Rightarrow\sqrt{2015}+\sqrt{2017}< 2\sqrt{2016}\)
Ta có: \(\sqrt{2006}-\sqrt{2005}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Mà: \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Nên: \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)
=>\(\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)