Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: -1/200<0<1/2000
b: \(\dfrac{-11}{56}=\dfrac{-275}{56\cdot25}=\dfrac{-275}{1400}\)
\(\dfrac{-25}{124}=\dfrac{-275}{124\cdot11}=\dfrac{-275}{1364}\)
mà 1400>1364
nên \(\dfrac{-11}{56}>-\dfrac{25}{124}\)
ta có: 1+\(\dfrac{-99}{100}=1-\dfrac{99}{100}=\dfrac{1}{100}\)
\(1+\dfrac{-100}{101}=1-\dfrac{100}{101}=\dfrac{1}{101}\)
Nhận thấy \(\dfrac{1}{100}>\dfrac{1}{101}\) \(\Rightarrow x>y\)
Phân tích ra số thập phân nhé bạn, hoặc là lấy x - y:
+ Nếu ra kết quả là số dương thì x > y.
+ Nếu ra kết quả là số âm thì x < y.
Giải:
Ta có:
\(x=-\dfrac{99}{100}\)
\(y=-\dfrac{100}{101}\)
Vì \(-\dfrac{99}{100}-\left(-\dfrac{100}{101}\right)=-\dfrac{1}{10100}\)
=> \(x< y\)
1/ a/ \(\left(\dfrac{2}{5}-3x\right)^2=\dfrac{9}{25}\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(\dfrac{2}{5}-3x\right)^2=\left(\dfrac{3}{5}\right)^2\\\left(\dfrac{2}{5}-3x\right)^2=\left(\dfrac{-3}{5}\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...........
b/ \(\left(\dfrac{2}{3}x-\dfrac{1}{3}\right)^5=\dfrac{1}{243}\)
\(\Leftrightarrow\left(\dfrac{2}{3}x-\dfrac{1}{5}\right)^5=\left(\dfrac{1}{3}\right)^5\)
\(\Leftrightarrow\dfrac{2}{3}x-\dfrac{1}{5}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{2}{3}x=\dfrac{8}{15}\)
\(\Leftrightarrow x=\dfrac{24}{30}\)
Vậy ....
\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+4}{333}\\ \Leftrightarrow\dfrac{3\left(x+1\right)}{3\cdot111}=\dfrac{2\left(y+2\right)}{2\cdot222}=\dfrac{z+4}{333}\\ \Leftrightarrow\dfrac{3x+3}{333}=\dfrac{2y+4}{444}=\dfrac{z+4}{333}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x+3}{333}=\dfrac{2y+4}{444}=\dfrac{z+4}{333}=\dfrac{3x+3+2y+4+z+4}{333+444+333}=\dfrac{3x+2y+z+11}{1110}=\dfrac{999+11}{1110}=\dfrac{1110}{1110}=1\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{3x+3}{333}=1\Rightarrow3x+3=333\Rightarrow3x=330\Rightarrow x=110\\\dfrac{2y+4}{444}=1\Rightarrow2y+4=444\Rightarrow2y=440\Rightarrow y=220\\\dfrac{z+4}{333}=1\Rightarrow z+4=333\Rightarrow z=329\end{matrix}\right.\)
Vậy ...
vì vai trò của a,b,c,d như nhau, giả sử \(a\ge b\ge c\ge d\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{\left|a-b\right|}{2}=\dfrac{\left|b-c\right|}{23}=\dfrac{\left|c-d\right|}{32}=\dfrac{\left|d-a\right|}{223}\)
=\(\dfrac{a-b+b-c+c-d-\left(-d+a\right)}{-166}=0\)
\(\Rightarrow a+b=0\Rightarrow a=b\) (1)
\(b-c=0\Rightarrow b=c\) (2)
\(c-d=0\Rightarrow c=d\) (3)
từ (1),(2) và (3) suy ra: a=b=c=d
a)
Khi a, b cùng dấu:
\(\Rightarrow\dfrac{a}{b}\ge0\) (Luôn luôn nhận giá trị không âm)
b)
Khi a, b khác dấu:
\(\Rightarrow\dfrac{a}{b}< 0\) (Luôn luôn nhận giá trị âm)
P/s: Đề phải là thế này nhé:
Cho số hữu tỉ ( a;b;b).
So sánh với 0 khi
a) a, b cùng dấu.
b) a, b khác dấu.
Chúc bạn học tốt!
a ) khi a , b cùng dấu thì :
\(\dfrac{a}{b}\) \(\ge\) 0 ( vì luôn nhận giá trị dương hoặc = 0 )
b ) khi a , b khác dấu thì :
\(\dfrac{a}{b}\) \(\le\) 0 ( vì luôn nhận giá trị âm hoặc = 0 )
a,
\(3-\left|\dfrac{-1}{2}\right|\\ =3-\dfrac{1}{2}\\ =\dfrac{6}{2}-\dfrac{1}{2}\\ =\dfrac{5}{2}\)
b,
\(\left|\dfrac{-1}{4}\right|+\dfrac{3}{4}-\left|-1\right|\\ =\dfrac{1}{4}+\dfrac{3}{4}-1\\ =1-1\\ =0\)
c,
\(\left|0,25\right|=-\left(-0,25\right)\\ 0,25=0,25\)
Xét 3 TH :
1) a < b
Khi đó ta có ab + 1a < ab + 1b hay a(b+1) < b(a+1)
Chia 2 vế cho b(b+1) ta được a/b < (a+1)/(b+1)
2) a = b ---> a/b = (a+1)/(b+1) = 1
3) a > b
Khi đó ta có ab + 1a > ab + 1b hay a(b+1) > b(a+1)
Chia 2 vế cho b(b+1) ta được a/b > (a+1)/(b+1)
Tóm lại
a/b < (a+1)/(b+1) nếu a < b
a/b = (a+1)/(b+1) nếu a = b
a/b > (a+1)/(b+1) nếu a > b
Qui đồng mẫu số:
a/b = a(b + 1)/ b(b + 1) = ab + 1a/ b(b + 1)
a+1/ b+1 = ( a + 1)b / (b + 1)b = ab+1b/ b(b+1)
Vì b>o nên mẫu của 2 phân số trên dương. Chỉ cần so sánh tử số:
So sánh ab+1a và ab+1b
+) Nếu a<b thì tử phân số thứ 1< tử phân số thứ 2
+) Nếu a=b => 2 phân số bằng nhau (=1)
+) Nếu a>b thì tử phân số thứ 1> tử phân số thứ 2
Đặt: \(A=\dfrac{222}{222^2+1}>0,B=\dfrac{223}{223^2+1}>0\)
Xét:
\(\dfrac{1}{A}=\dfrac{222^2+1}{222}=222+\dfrac{1}{222}\\ \dfrac{1}{B}=\dfrac{223^2+1}{223}=223+\dfrac{1}{223}\)
Dễ dàng nhận thấy: \(\dfrac{1}{A}=222+\dfrac{1}{222}< 222+1< 222+1+\dfrac{1}{223}=\dfrac{1}{B}\)
hay \(\dfrac{1}{A}< \dfrac{1}{B}\Rightarrow A>B\)
Vậy: \(\dfrac{222}{222^2+1}>\dfrac{223}{223^2+1}\)