K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10

1) sin35⁰ = cos(90⁰ - 35⁰) = cos55⁰

Vậy sin35⁰ = cos55⁰

tan35⁰ = cot(90⁰ - 35⁰) = cot55⁰

Vậy tan35⁰ = cot55⁰

7 tháng 10

2) ∆ABC vuông tại A (gt)

⇒ AB = BC.cosB

= 20.cos36⁰

≈ 16,18 (cm)

a ) \(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)

\(2\sqrt{9.5}+\sqrt{5}-3\sqrt{16.5}\) \

\(2.3\sqrt{5}+\sqrt{5}-3.4\sqrt{5}\)

\(6\sqrt{5}+\sqrt{5}-12\sqrt{5}\)

\(\left(6+1-12\right)\sqrt{5}\)

\(-5\sqrt{5}\) 

b ) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)

= / \(2-\sqrt{3}\) / \(+\dfrac{2.\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right).\left(\sqrt{3}-1\right)}-6\sqrt{\dfrac{48}{3^2}}\)

\(2-\sqrt{3}+\dfrac{2.\left(\sqrt{3}-1\right)}{\sqrt{3}^2-1^2}-\dfrac{6}{3}\sqrt{48}\) 

\(2-\sqrt{3}+\dfrac{2.\left(\sqrt{3}-1\right)}{3-1}-2\sqrt{48}\)

=\(2-\sqrt{3}+\sqrt{3}-1-2\sqrt{16.3}\) 

\(2-\sqrt{3}+\sqrt{3}-1-8\sqrt{3}\) 

=  \(1-8\sqrt{3}\)

ý c ) em không biết làm 

24 tháng 10 2023

loading...  

Trình tự dựng gồm 3 bước:

- Dựng đoạn thẳng BC = 6cm

- Dựng cung chứa góc 40trên đoạn thẳng BC.

- Dựng đường thẳng xy song song với BC và cách BC một khoảng là 4cm như sau:

Trên đường trung trực d của đoạn thẳng BC lấy đoạn HH' = 4cm (dùng thước có chia khoảng mm). Dựng đường thẳng xy vuông góc với HH' tại H

Gọi giao điểm xy và cung chứa góc là . Khi đó tam giác ABC hoặc A'BC đều thỏa yêu cầu của đề toán

Cách dựng:

+ Dựng đoạn thẳng BC = 6cm.

+ Dựng cung chứa góc 40º trên đoạn thẳng BC (tương tự bài 46) :

Dựng tia Bx sao cho Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

Dựng tia By ⊥ Bx.

Dựng đường trung trực của BC cắt By tại O.

Dựng đường tròn (O; OB).

Cung lớn BC chính là cung chứa góc 40º dựng trên đoạn BC.

+ Dựng đường thẳng d song song với BC và cách BC một đoạn 4cm:

Lấy D là trung điểm BC.

Trên đường trung trực của BC lấy D’ sao cho DD’ = 4cm.

Dựng đường thẳng d đi qua D’ và vuông góc với DD’.

+ Đường thẳng d cắt cung lớn BC tại A.

Ta được ΔABC cần dựng.

Chứng minh:

+ Theo cách dựng có BC = 6cm.

+ A ∈ cung chứa góc 40º dựng trên đoạn BC

Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ A ∈ d song song với BC và cách BC 4cm

⇒ AH = DD’ = 4cm.

Vậy ΔABC thỏa mãn yêu cầu đề bài.

Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.

3 tháng 9 2021

a tgABC can tai c,b oc=12,5

22 tháng 10 2021

Trên BC lấy I sao cho IC=IB

Ta có AM=MC=AC/2=20/2= 10 cm

Từ M kẻ MH vuông góc AB. Theo gt, ta được MH=8 cm

Áp dụng Pytago trong tam giác vuông AMH: AH2= AM- MH2 = 10- 82= 36 ----> AH=6 cm

có AM=MC ; IB=IC ---> MI=1/2AB=1/2 .24 =12 cm( đường TB)

Từ I kẻ IK vuông góc AB

có MI// AB( MI là đường trung bình) ; IK//MK (cùng vuông góc AB) 

---> MIKH là hình bình hành

---> MI=HK=12 cm; MH=IK=8 cm

BK= AB-AH-HK = 24-6-12=6 cm

Xét tam giác AMH và tam giác BIK:

     AH=BK=6 

     góc AHM= góc BKI= 90O

      MH=IK=8

----> tam giác AMH=tam giác BIK(c.g.c)

----> góc MAH= góc IBK (cặp góc tương ứng) hay góc CAB= góc CBA

----> tam giác ABC cân tại C

b) có AM=MC=AC/2=10 cm ; IB=IC= BC/2 ; mà AC=BC (tam giáccân)

----> AM=MC=IB=IC=10 cm

Kéo dài CO cắt AB tại D

tam giác AOC có OA=OC (bán kính) --> tam giác AOC cân tại O

có OM là trung tuyến ---> OM vuông góc AC hay góc OMC=90o

Tương tự với tam giác OCB được  OI vuông góc BC hay góc OIC=90o

Xét tam giác vuông OMC và tam giác vuông OIC:

     MC=IC=10cm

    OC cạnh chung

--->tam giác OMC = tam giác OIC (ch.cgv)

--> góc MCO= góc ICO ---> CO hay CD là phân giác góc ACB của tam giác cân ABC --->

CD vuông góc AB hay góc ADC=90oAD=BD=AB/2 = 12 cm

Theo Pytago trong tam giác ACD: CD2= AC2-AD2 = 202-122 =256  ---> CD=16 cm

Đặt OC=OA=X --> OD= CD-OC = 16 - X

Theo Pytago tam giác AOD: AO2= OD2+AD2

                                                     <-->X2= (16-X)2 + 122

                                                     <--> 162 -32X + X2 +122 - X2=0

                                       <--> 400 - 32X=0

                                       <--> X= -400/-32= 12,5 cm

 Vậy bán kính đường tròn bằng 12,5 cm

28 tháng 10 2017

a) Áp dụng định lí py ta go trong \(\Delta\)ABC:\(\widehat{A}\)=1v

BC2= AB2+AC2

=62+82

=>BC=10

áp dụng hệ thức lượng giữa cạnh và góc trong \(\Delta\)ABC:

\(\dfrac{1}{h^2}=\dfrac{1}{b^2}+\dfrac{1}{c^2}\) => \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{25}{576}\)

=>AH=23,04

Ta có :

AB2=BC2.BH2

=>BH=\(\dfrac{AB^2}{BC}\)=\(\dfrac{6^2}{10}=3,6\)

BC=BH+HC

=>HC=BC-BH=10-3,6=6,4

21 tháng 1 2021

4 tia vì 2 + 2 = 4

20 tháng 9 2021

hứng minh được AEB \backsim AFC, từ đó có \dfrac{AE}{AB} = \dfrac{AF}{AC}t.AE phần AB=AF phần AC

Ta có: \Delta AEF\backsim\Delta ABC (g.c.g)
b, từ câu a) suy ra EF phần BC=AE phần AB=cos A=cos60 độ =1 phần 2
=> BC=10cm 
c) Saef phần Sabc=(AE phần AB)^2=cos^2 A=1 phần 4 => SAEF =1 phần 4 SABC=25cm^2

20 tháng 9 2021

 

loading...

1.

Chứng minh được \widehat{CEB} = \widehat{BDC} = 90^{\circ}.

Suy ra 4 điểm B,E, D, C cùng thuộc đường tròn đường kính CB nên tứ giác BCDE nội tiếp.

Có tứ giác BCDE nội tiếp nên \widehat{DCE} = \widehat{DBE} (2 góc nội tiếp cùng chắn cung DE) hay \widehat{ACQ} = \widehat{ABP}.

Trong đường tròn tâm (O), ta có \widehat{ACQ} là góc nội tiếp chắn cung AQ và \widehat{ABP} nội tiếp chắn cung AP

\Rightarrow \overset{\frown}{AQ}=\overset{\frown}{AP}.

2.

(O) có \overset{\frown}{AQ}=\overset{\frown}{AP} nên \widehat{ABP} = \widehat{ABQ} hay \widehat{HBE} = \widehat{QBE}.

Ta chứng minh được BE vừa là đường cao, vừa là phân giác của tam giác HBQ nên E là trung điểm của HQ.

Chứng minh tương tự D là trung điểm của HP \Rightarrow DE là đường trung bình của tam giác HPQ \Rightarrow DE // PQ (1).

Do \overset{\frown}{AQ}=\overset{\frown}{AP} nên A là điểm chính giữa cung PQ \Rightarrow OA \perp PQ (2).

Từ (1) và (2) suy ra OA \perp DE.

3.

Kẻ đường kính CF của đường tròn tâm (O), chứng minh tứ giác ADHE nội tiếp đường tròn đường kính AH.

Chứng minh tứ giác AFBH là hình bình hành, suy ra BF=AH.

Trong đường tròn (O) có \widehat{CAB} = \widehat{CFB} = 60^{\circ} (2 góc nội tiếp cùng chắn cung BC). Chỉ ra tam giác BCF vuông tại B và áp dụng hệ thức giữa cạnh và góc ta được BF=CF. \cos 60^{\circ} =R=6 cm.

Đường tròn ngoại tiếp tứ giác ADHE cũng là đường tròn ngoại tiếp tam giác ADE.

Gọi r là bán kính đường tròn ngoại tiếp tam giác ADE.

Suy ra 2r=AH=BF=6 cm.

Vậy r=3 cm.

12 tháng 5 2021

                           Bài làm :

a) Ta có :

\(\widehat{ACB}\text{ là góc nội tếp chắn nửa đường tròn}\)

\(\Rightarrow\widehat{ACB}=90^o\Rightarrow\widehat{ACM}=180^o-\widehat{ACB}=90^o\)

Từ đó ; ta có :

\(\widehat{ACM}+\widehat{AHM}=90+90=180^o\)

=> Tứ giác AHMC là tứ giác nội tiếp đường tròn vì có 2 góc đối diện  = 180 độ 

=> Điều phải chứng minh

b) Theo phần a : Tứ giác AHMC là tứ giác nội tiếp 

\(\Rightarrow\widehat{AMH}=\widehat{ACH}\left(1\right)\)

Xét đường tròn (O) : Góc ADC và góc ABC đều là 2 góc nội tiếp cùng chắn cung AC

\(\Rightarrow\widehat{ADC}=\widehat{ABC}\left(2\right)\)

Vì CD⊥AB ; MH⊥AB

=> CD//MH 

=>∠ADC = ∠AMH ( 2góc so le trong ) (3)

Từ (1) ; (2) ; (3) 

\(\Rightarrow\widehat{ABC}=\widehat{ACH}\)

=> Điều phải chứng minh

c)∠AOC = 45o

=>∠COB = 180 - 45 = 135o

\(\Rightarrow S_{OCB}=\frac{\pi.R^2.n}{360}=\frac{\pi.2^2.135}{360}=\frac{3}{2}\pi\left(cm^2\right)\)

a) Xét tứ giác AHMC có 

góc ACM + góc AHM = 180 độ

Vậy tứ giác AHMC nội tiếp

 

20 tháng 10 2021

b: \(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)

19 tháng 2 2021

A B C D M N E F I
 

Vì: FBM=FAM=45 độ nên BFMA là tứ giác nội tiếp

tương tự có đpcm

b, ta có: 

MFN=DAB=90

NEM=BCD=90

=> nội tiếp

c, theo câu b ta có: 

MNB=BEC=BNC nên: NB là phân giác góc INC

thấy ngay H là trực tâm tam giác BMN nên: BI vuông góc MN 

do đó áp dụng tính chất đường phân giác ta được BI=BC=a.

24 tháng 2 2021

Chứng minh góc EBN = góc ECN = 450

=> Tứ giác BENC nội tiếp (đpcm)