K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2023

\(S=\sqrt[]{1.2007}+\sqrt[]{3.2005}+\sqrt[]{5.2003}+...+\sqrt[]{2007.1}\)

Tổng số hạng của S là :

\(\left(2007-1\right):2+1=1004\left(số,hạng\right)\)

Áp dụng bất đảng Cauchy cho 1004 cặp số \(\left(1;2007\right);\left(3;2005\right);\left(5;2003\right)...\left(2007;1\right)\)

\(\sqrt[]{1.2007}< \dfrac{1+2007}{2}=\dfrac{2008}{2}\)

\(\sqrt[]{3.2005}< \dfrac{3+2005}{2}=\dfrac{2008}{2}\)

\(\sqrt[]{5.2003}< \dfrac{5+2003}{2}=\dfrac{2008}{2}\)

\(.....\)

\(\sqrt[]{2007.1}< \dfrac{2007+1}{2}=\dfrac{2008}{2}\)

\(\Rightarrow S=\sqrt[]{1.2007}+\sqrt[]{3.2005}+\sqrt[]{5.2003}+...+\sqrt[]{2007.1}< 1004.\dfrac{2008}{2}=1004^2\)

Vậy \(S< 1004^2\)

31 tháng 8 2023

Đính chính

... Bất đẳng thức Cauchy...

27 tháng 10 2020

\(\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)   

\(\sqrt{2007}-\sqrt{2006}=\frac{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}{\sqrt{2007}+\sqrt{2006}}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)   

Vì \(\sqrt{2006}+\sqrt{2005}< \sqrt{2007}+\sqrt{2006}\)   

Nên \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2006}}\)   

Vậy \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)

12 tháng 9 2016

Ta có : \(\sqrt{2006}-\sqrt{2005}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)

             \(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)

Mà : \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}-\sqrt{2006}}\)

Nến : \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)

\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)

 

\(\left(\sqrt{2005}+\sqrt{2007}\right)^2=4012+2\sqrt{2005.2007}\)

\(=4012+2\sqrt{\left(2016-1\right)\left(2016+1\right)}=4012+2\sqrt{2016^2-1}\)

\(\left(2\sqrt{2006}\right)^2=4012+4012=4012+2\sqrt{2016^2}\)

=>\(\left(\sqrt{2015}+\sqrt{2017}\right)^2< \left(2\sqrt{2016}\right)^2\Rightarrow\sqrt{2015}+\sqrt{2017}< 2\sqrt{2016}\)

7 tháng 7 2016

Ta có: \(\sqrt{2006}-\sqrt{2005}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)

\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)

Mà: \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2006}}\)

Nên: \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)

=>\(\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)

13 tháng 8 2017

Easy

Ta có:

\(\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)

Tương tự cũng có: \(\frac{1}{\sqrt{2007}+\sqrt{2008}}\)

Dễ thấy: \(\sqrt{2005}+\sqrt{2006}< \sqrt{2007}+\sqrt{2008}\)

\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2008}}\)

13 tháng 8 2017

Easy

Ta có:

\(\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)

Tương tự cũng có: \(\frac{1}{\sqrt{2007}+\sqrt{2008}}\)

Dễ thấy: \(\sqrt{2005}+\sqrt{2006}< \sqrt{2007}+\sqrt{2008}\)

\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2008}}\)