Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1/21 + 1/22 + ... + 1/30
Số lượng số của S là :
( 30 - 21 ) : 1 + 1 = 10 ( số )
Ta có : 1/21 > 1/30 , 1/22 > 1/30 , ... 1/29 > 1/30 , 1/30 = 1/30
=> 1/21 + 1/22 + ...+ 1/30 ( 10 số ) > 1/30 + 1/30 + ...+ 1/30 ( 10 số )
=> S > 1/30 . 10
=> S > 1/3
Chúc bạn học giỏi !!!!
Ta có :
1/21 > 1/30
1/22 > 1/30
.........
1/29 > 1/30
=> S > 1/30 + 1/30 + ...... + 1/30 ( có 10 phân số 1/30 )
= 10/30 = 1/3
=>S > 1/3
Tk mk nha
ta có 1/3=10/30
1/21+1/22+...+1/30 có 10 p/số
mà 1/21>1/30
1/22>1/30
....
1/29>1/30
1/30=1/30
=>1/21+..1/30>1/30+....1/30 có 10 phân số
=>1/21+...1/30>1/3
Ta có : 1/21 > 1/30 ; 1/22 > 1/30 ;...; 1/29 > 1/30
=> 1/21 + 1/22 + .. + 1/29 > 1/30 + 1/30 +... + 1/30 (10 số 1/30) = 10/30 = 1/3 (**)
Lại có : 1/31 > 1/40 ; 1/32 > 1/40 ; ...; 1/39 > 1/40
=> 1/31 + 1/32 +... + 1/39 > 1/4 (**)
Đặt A =1/21 +1/22 +1/23 +... + 1/29 +1/31 + ... +1/39
Từ (*) và (**) => A > 1/3 + 1/4 => A > 7/12 (hay A>K)
Mà A<H => H>K
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)+\left(1+\frac{1}{2}+...+\frac{1}{2^{10}}\right)\)
\(2S-S=S=2-\frac{1}{2^{10}}\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2S=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(2S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(S=2S-S\)
\(S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(S=3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)
\(S=2-\frac{1}{2^{10}}\)
Ta có S = ( 1/2 - 1) : ( 1/3 - 1) : (1/4 - 1) :... : ( 1/50 - 1)
S = -1/2 : ( -2/3) : ( -3/4) : ... : ( -49/ 50)
S= -1/2 x (-3/2) x ( -4/3) x ... x (-50/49)
S= -1/2 x 1/3 x 50
S= -25/3
a , \(A=\frac{19^{30}+1}{19^{31}+1}\Rightarrow19A=\frac{19^{31}+19}{19^{31}+1}=\frac{19^{31}+1+18}{19^{31}+1}=1+\frac{18}{19^{31}+1}\)
\(B=\frac{19^{31}+1}{19^{32}+1}\Rightarrow19B=\frac{19^{32}+19}{19^{32}+1}=\frac{19^{32}+1+18}{19^{32}+1}=1+\frac{18}{19^{32}+1}\)
Vì \(19A< 19B\Leftrightarrow A< B\)
b, câu b tương tự nha
S = \(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{40}\) (có 40-21+1=20 số hạng)
Ta có : \(\dfrac{1}{20}>\dfrac{1}{21}>\dfrac{1}{22}>...>\dfrac{1}{40}\)(vì 1>0 ; 0<20<21<22<...<40)
=> \(\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}>\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{40}\) (mỗi vế có 20 số hạng )
=> \(\dfrac{1}{20}.20>S\)
=> 1 > S
=> S < 1
Vậy S < 1