Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(2A=1-\frac{1}{3^{100}}\)
\(A=\frac{1-\frac{1}{3^{100}}}{2}\)
\(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(B=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
\(3B=\frac{5.3}{4.7}+\frac{5.3}{7.10}+\frac{5.3}{10.13}+...+\frac{5.3}{25.28}\)
\(3B=5\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)
\(3B=5\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(3B=5\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(3B=5\cdot\frac{3}{14}=\frac{15}{14}\)
\(B=\frac{15}{14}:3=\frac{5}{14}\)
a) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(2A=1-\frac{1}{3^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)
b) \(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(B=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{5}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+\frac{5}{3}.\left(\frac{1}{10}-\frac{1}{13}\right)+...+\frac{5}{3}.\left(\frac{1}{25}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\frac{3}{14}\)
\(\Rightarrow B=\frac{5}{14}\)
b) Áp dụng tính chất
\(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)
Ta có: \(B=\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10.\left(10^{15}+1\right)}{10.\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)
\(\Rightarrow B< A\)
\(B< 1\Rightarrow\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10\left(10^{15}+1\right)}{10\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)
\(\Rightarrow A>B\)
a) \(\dfrac{-15}{4}:\dfrac{21}{-10}=\dfrac{-15}{4}.\dfrac{-10}{21}=\dfrac{25}{14}\)
b) \(\dfrac{-7}{14}:\left(-0,14\right)=\dfrac{-7}{14}.\dfrac{-50}{7}=\dfrac{25}{7}\)
c) \(\left(\dfrac{-11}{15}\right):1\dfrac{1}{10}=\dfrac{-11}{15}.\dfrac{10}{11}=\dfrac{-2}{3}\)
d) \(2\dfrac{1}{7}:1\dfrac{1}{14}=\dfrac{15}{7}.\dfrac{14}{15}=2\)
\(a.-\dfrac{15}{4}:\left(\dfrac{21}{-10}\right)\)
\(=-\dfrac{15}{4}\cdot\left(-\dfrac{10}{21}\right)\)
\(=\dfrac{25}{14}\)
\(b.-\dfrac{7}{14}:\left(-0,14\right)\)
\(=-\dfrac{1}{2}:\left(-\dfrac{7}{50}\right)\)
\(=\dfrac{25}{7}\)
\(c.\left(-\dfrac{11}{15}\right):\left(1\dfrac{1}{10}\right)\)
\(=\left(-\dfrac{11}{15}\right):\dfrac{11}{10}\)
\(=-\dfrac{2}{3}\)
\(d.\left(2\dfrac{1}{7}\right):\left(1\dfrac{1}{14}\right)\)
\(=\dfrac{15}{7}:\dfrac{15}{14}\)
\(=2\)
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
Ta có:
\(A=\frac{10^{15}+1}{10^{16}+1}\)
\(10A=\frac{10^{16}+10}{10^{16}+1}\)
\(B=\frac{10^{16}+1}{10^{17}+1}\)
\(10B=\frac{10^{17}+10}{10^{17}+1}\)
Ta so sánh \(10A\) và \(10B\)
Có:
\(10A:\) Mẫu - tử = 9
\(10B:\) Mẫu - tử = 9
Lại có:
\(\frac{10^{16}+10}{10^{16}+1}\) \(-1\)\(=\frac{9}{10^{16}+1}\)
\(\frac{10^{17}+10}{10^{17}+1}-1=\frac{9}{10^{17}+1}\)
Vì \(\frac{9}{10^{16}+1}\)\(>\frac{9}{10^{17}+1}\)nên \(10A>10B\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Theo bải ra ta có:
A=\(\frac{10^{15}+1}{10^{16}+1}\)=> 10A =.\(\frac{10.\left(10^{15}+1\right)}{10^{16}+1}\)= \(\frac{10.10^{15}+1.10}{10^{16}+1}\)
= \(\frac{10.10^{15}+10}{10^{16}+1}\)=\(\frac{10^{16}+1+9}{10^{16}+1}\)= \(1+\frac{9}{10^{16}+1}\)
B= \(\frac{10^{16}+1}{10^{17}+1}\)=> 10B = \(\frac{10.\left(10^{16}+1\right)}{10^{17}+1}\)=\(\frac{10.10^{16}+1.10}{10^{17}+1}\)
= \(\frac{10.10^{16}+10}{10^{17}+1}\)= \(\frac{10^{17}+1+9}{10^{17}+1}\)= \(1+\frac{9}{10^{17}+1}\)
Vì 1=1 mà \(\frac{9}{10^{16}+1}\)> \(\frac{9}{10^{17}+1}\)nên => 10A > 10B => A>B
Vậy A>B.