Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì C, B cùng thuộc đường tròn (O) => OB=OC => tam giác OBC cân tại O => góc OCB= góc OBC (1)
tương tự góc O'BD= góc O'DB (2)
vì BD là tia pg của góc OBO' => góc OBC= góc DBO' (3)
từ (1) , (2) , (3)=> góc OBC=OCB=O'DB=O'BD
=> góc BOC = góc DO'B
a) \(\Delta ABC\)cân ở A nên AB = AC ; \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{DBC}=\widehat{ECA}=\widehat{ECB}\)
\(\Rightarrow sđ\widebat{EB}=sđ\widebat{CD}\)( 1 )
Ta có : \(\widehat{EAC}=\frac{1}{2}sđ\widebat{EC}=\frac{1}{2}\left(sđ\widebat{EB}+sđ\widebat{BC}\right)\) ( 2 )
\(\widehat{BAD}=\frac{1}{2}sđ\widebat{BD}=\frac{1}{2}\left(sđ\widebat{BC}+sđ\widebat{CD}\right)\)( 3 )
Từ ( 1 ), ( 2 ) và ( 3 ) suy ra \(\widehat{EAC}=\widehat{BAD}\)
Xét \(\Delta EAC\)và \(\Delta BAD\)có :
\(AC=AB;\widehat{ACE}=\widehat{ABD};\widehat{EAC}=\widehat{BAD}\)
\(\Rightarrow\Delta EAC=\Delta DAB\left(g.c.g\right)\)
b) từ câu a suy ra AE = AD
Ta có : \(\widehat{CAD}=\frac{1}{2}sđ\widebat{CD}=\widehat{CBD}=\widehat{ACE}\)
\(\Rightarrow AD//EI\)( 4 )
Tương tự : \(AE//DI\)( 5 )
Từ ( 4 ) và ( 5 ) suy ra AEID là hình bình hành có AE = AD nên là hình thoi
ΔOBC cân tại O nên \(\widehat{BOC}=180^0-2\cdot\widehat{OBC}\)
ΔBO'D cân tại O' nên \(\widehat{BO'D}=180^0-2\cdot\widehat{O'BD}\)
mà \(\widehat{OBC}=\widehat{O'BD}\)
nên \(\widehat{BOC}=\widehat{BO'D}\)