K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

Có lời giải đàng hoàng nha

25 tháng 6 2017

1) \(x+\dfrac{30}{100}x=-1,31\)

\(\Leftrightarrow x+\dfrac{3}{10}x=-\dfrac{131}{100}\)

\(\Leftrightarrow100x+30x=-131\)

\(\Leftrightarrow130x=-131\)

\(\Leftrightarrow x=-\dfrac{131}{130}\)

Vậy \(x=-\dfrac{131}{130}\)

b) \(\left(4,5-2x\right)\cdot\left(-1\dfrac{4}{7}\right)=\dfrac{11}{4}\)

\(\Leftrightarrow\left(\dfrac{9}{2}-2x\right)\cdot\left(-\dfrac{4}{7}\right)=\dfrac{11}{4}\)

\(\Leftrightarrow-\dfrac{18}{7}+\dfrac{8}{7}x=\dfrac{11}{4}\)

\(\Leftrightarrow-72+32x=77\)

\(\Leftrightarrow32x=77+72\)

\(\Leftrightarrow32x=149\)

\(\Leftrightarrow x=\dfrac{149}{32}\)

Vậy \(x=\dfrac{149}{32}\)

25 tháng 6 2017

sao k làm hết cho bạn ấy v anh

19 tháng 1 2022

2/

a/ \(\dfrac{7}{10}=\dfrac{7.15}{10.15}=\dfrac{105}{150}\)

\(\dfrac{11}{15}=\dfrac{11.10}{15.10}=\dfrac{110}{150}\)

-Vì \(\dfrac{105}{150}< \dfrac{110}{150}\)(105<110)nên \(\dfrac{7}{10}< \dfrac{11}{15}\)

b/ \(\dfrac{-1}{8}=\dfrac{-1.3}{8.3}=\dfrac{-3}{24}\)

-Vì \(\dfrac{-3}{24}>\dfrac{-5}{24}\left(-3>-5\right)\)nên\(\dfrac{-1}{8}>\dfrac{-5}{24}\)

c/\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)

\(\dfrac{10}{40}=\dfrac{10:10}{40:10}=\dfrac{1}{4}\)

-Vì \(\dfrac{1}{4}=\dfrac{1}{4}\)nên\(\dfrac{25}{100}=\dfrac{10}{40}\)

19 tháng 1 2022

a/ \(\dfrac{7}{10}< \dfrac{11}{15}\)

c/ \(\dfrac{25}{100}=\dfrac{10}{40}\)

28 tháng 6 2021

Ta có `3A=1+1/3+....+1/3^99`

`=>3A-A=1-1/3^100`

`=>2A=1-1/3^100`

`=>A=1/2-1/(2.3^100)<1/2`

Hay `A<B`

12 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\left(n\in N\right)\)

\(B=\dfrac{10^{20}+1}{10^{21}+1}< 1\)

\(B< \dfrac{10^{20}+1+9}{10^{21}+1+9}\Rightarrow B< \dfrac{10^{20}+10}{10^{21}+10}\Rightarrow B< \dfrac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\Rightarrow B< \dfrac{10^{19}+1}{10^{20}+1}=A\)\(\Rightarrow B< A\)

12 tháng 4 2017

Bài 1: Tính tổng 100 số hạng đầu tiên của các dãy sau:

a) \(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{1}{1.2}\\\dfrac{1}{6}=\dfrac{1}{2.3}\\\dfrac{1}{12}=\dfrac{1}{3.4}\\...\end{matrix}\right.\)

Vậy số thứ 100 của dãy là: \(\dfrac{1}{100.101}=\dfrac{1}{10100}\)

Tổng: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

b) \(\left\{{}\begin{matrix}\dfrac{1}{6}=\dfrac{1}{\left(5.0+1\right)\left(5.1+1\right)}\\\dfrac{1}{66}=\dfrac{1}{\left(5.1+1\right)\left(5.2+1\right)}\\\dfrac{1}{176}=\dfrac{1}{\left(5.2+1\right)\left(5.3+1\right)}\\...\end{matrix}\right.\)

Vậy số thứ 100 của dãy là: \(\dfrac{1}{\left(5.99+1\right)\left(5.100+1\right)}=\dfrac{1}{248496}\)

Tổng: \(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{496.501}\)

\(=\dfrac{1}{5}\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{496.501}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{496}-\dfrac{1}{501}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{501}\right)\)

\(=\dfrac{1}{5}.\dfrac{500}{501}\)

\(=\dfrac{100}{501}\)

12 tháng 4 2017

Bài 2: Tính:

a) \(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)

\(A=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(\dfrac{1}{3}+\dfrac{1}{97}\right)+...+\left(\dfrac{1}{49}+\dfrac{1}{51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(A=\dfrac{\dfrac{100}{1.99}+\dfrac{100}{3.97}+\dfrac{100}{5.95}+...+\dfrac{100}{49.51}}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(A=\dfrac{100\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(\Rightarrow A=\dfrac{100}{2}=50\)

10 tháng 4 2021

a) Quy luật là gì ??

b) 

Đặt

 \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\\\Rightarrow2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2019}}\\ \Rightarrow2A-A=1-\dfrac{1}{2^{2020}}\Rightarrow A=1-\dfrac{1}{2^{2020}}\)

Suy ra , phương trình trở thành :

213 -x  =13

<=> x=200