Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) \(\dfrac{-15}{17}\) và \(\dfrac{-19}{21}\)
Ta có: \(\dfrac{-15}{17}=-1+\dfrac{2}{17}\); \(\dfrac{-19}{21}=-1+\dfrac{2}{21}\)
Vì \(\dfrac{2}{17}>\dfrac{2}{21}\)
Do đó: \(\dfrac{-15}{17}>\dfrac{19}{-23}\)
b) \(\dfrac{-13}{19}\) và \(\dfrac{19}{-23}\)
Ta có: \(\dfrac{19}{23}>\dfrac{19}{25}\); \(\dfrac{13}{19}=1-\dfrac{6}{19}\); \(\dfrac{19}{25}=1-\dfrac{6}{25}\)
mà \(\dfrac{6}{19}>\dfrac{6}{25}\) \(\Rightarrow\dfrac{13}{19}< \dfrac{19}{25}< \dfrac{19}{23}\)
Vì \(\dfrac{13}{19}< \dfrac{19}{23}\Rightarrow\dfrac{-13}{19}>\dfrac{19}{-23}\)
c) \(\dfrac{-24}{35}\) và \(\dfrac{-19}{30}\)
Ta có: \(\dfrac{-24}{35}=-1+\dfrac{19}{35}\);\(\dfrac{-19}{30}=-1+\dfrac{11}{30}\)
Vì \(\dfrac{11}{35}< \dfrac{11}{30}\)
Do đó: \(\dfrac{-24}{35}< \dfrac{-19}{30}\)
d) \(\dfrac{-1941}{1931}\) và \(\dfrac{-2011}{2001}\); \(\dfrac{-2011}{2001}=-1+\dfrac{10}{2001}\)
Vì \(\dfrac{10}{1931}< \dfrac{10}{1001}\)
Do đó: \(\dfrac{-1941}{1931}< \dfrac{-2011}{2001}\)
Ta có: \(\dfrac{-1941}{1931}=-1+\dfrac{10}{1931}\)
Sorry câu d mình viết ngược:
Làm lại:
d) \(\dfrac{-1941}{1931}\) và \(\dfrac{-2011}{2001}\)
Ta có: \(\dfrac{-1941}{1931}=-1+\dfrac{10}{1931};\)
\(\dfrac{-2011}{2001}=-1+\dfrac{10}{2001}\)
Vì \(\dfrac{10}{1931}< \dfrac{10}{1001}\)
Do đó: \(\dfrac{-1941}{1931}< \dfrac{-2011}{2001}\)
2/
a/ \(\dfrac{7}{10}=\dfrac{7.15}{10.15}=\dfrac{105}{150}\)
\(\dfrac{11}{15}=\dfrac{11.10}{15.10}=\dfrac{110}{150}\)
-Vì \(\dfrac{105}{150}< \dfrac{110}{150}\)(105<110)nên \(\dfrac{7}{10}< \dfrac{11}{15}\)
b/ \(\dfrac{-1}{8}=\dfrac{-1.3}{8.3}=\dfrac{-3}{24}\)
-Vì \(\dfrac{-3}{24}>\dfrac{-5}{24}\left(-3>-5\right)\)nên\(\dfrac{-1}{8}>\dfrac{-5}{24}\)
c/\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)
\(\dfrac{10}{40}=\dfrac{10:10}{40:10}=\dfrac{1}{4}\)
-Vì \(\dfrac{1}{4}=\dfrac{1}{4}\)nên\(\dfrac{25}{100}=\dfrac{10}{40}\)
a/ \(\dfrac{7}{10}< \dfrac{11}{15}\)
c/ \(\dfrac{25}{100}=\dfrac{10}{40}\)
`f)(-2)/17 + 15/23 + (-15)/17 + 4/19 + 8/23`
`= (-2/17+ -15/17)+(15/23+8/23)+4/19`
`= -1+1+4/19`
`= 0 +4/19`
`= 0`
`g)(-1)/2 + 3/21 + (-2)/6 + (-5)/30`
`= (-1)/2 + 1/7 + (-1)/3 + (-1)/6`
`= (-21)/42 + 6/42 + (-14)/42 + (-7)/42`
`=(-36)/42`
`=(-6)/7`
f)\(-\dfrac{2}{17}+\dfrac{15}{23}+-\dfrac{15}{17}+\dfrac{4}{19}+\dfrac{8}{23}\)
\(=\left(-\dfrac{2}{17}+-\dfrac{15}{17}\right)+\left(\dfrac{15}{23}+\dfrac{8}{23}\right)+\dfrac{4}{19}\)
\(=-1+1+\dfrac{4}{19}\)
\(=0+\dfrac{4}{19}=\dfrac{4}{19}\)
g)\(-\dfrac{1}{2}+\dfrac{3}{21}+-\dfrac{2}{6}+-\dfrac{5}{30}\)
\(=-\dfrac{1}{2}+\dfrac{1}{7}+-\dfrac{1}{3}+-\dfrac{1}{6}\)
\(=\left(-\dfrac{1}{2}+-\dfrac{1}{3}+-\dfrac{1}{6}\right)+\dfrac{1}{7}\)
\(=-\dfrac{3+2+1}{6}+\dfrac{1}{7}\)
\(=\dfrac{1}{7}-1\)
\(=\dfrac{1}{7}-\dfrac{7}{7}=-\dfrac{6}{7}\)
a: \(\dfrac{12}{49}< \dfrac{13}{49}< \dfrac{13}{47}\)
b: \(\dfrac{12}{47}>\dfrac{19}{47}>\dfrac{19}{77}\)
a) Giải
So sánh từng số hạng của A với B, ta thấy:
\(\dfrac{19}{41}< \dfrac{21}{41};\dfrac{23}{53}< \dfrac{23}{49}\) và \(\dfrac{29}{61}< \dfrac{33}{65}\) (vì 29.65 < 33.61)
\(\Rightarrow\dfrac{19}{41}+\dfrac{23}{53}+\dfrac{29}{61}< \dfrac{21}{41}+\dfrac{23}{49}+\dfrac{33}{65}\)
\(\Rightarrow A< B\)
Vậy A < B
b) Giải
Ta có: \(C=\dfrac{19^{20}+5}{19^{20}-8}=\dfrac{19^{20}-8+13}{19^{20}-8}=1+\dfrac{13}{19^{20}-8}\)
\(D=\dfrac{19^{21}+6}{19^{21}-7}=\dfrac{19^{21}-7+13}{19^{21}-7}=1+\dfrac{13}{19^{21}-7}\)
Vì \(19^{20}-8< 19^{21}-7\) và \(13>0\)
\(\Rightarrow\dfrac{13}{19^{20}-8}< \dfrac{13}{19^{21}-7}\)
\(\Rightarrow1+\dfrac{13}{19^{20}-8}< 1+\dfrac{13}{19^{21}-7}\)
\(\Rightarrow\) \(C< D\)
Vậy C < D.
Bài 1:
1: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà \(17^{19}+1>17^{18}+1\)
nên 17A>17B
hay A>B
2: \(C=\dfrac{98^{99}+98^{10}+1-98^{10}}{98^{89}+1}=98^{10}+\dfrac{1-98^{10}}{98^{89}+1}\)
\(D=\dfrac{98^{98}+98^{10}+1-98^{10}}{98^{88}+1}=98^{10}+\dfrac{1-98^{10}}{98^{88}+1}\)
mà \(98^{89}+1>98^{88}+1\)
nên C>D
a)\(12< 13;49>47\)
\(\Rightarrow\dfrac{12}{49}< \dfrac{13}{47}\)
b)\(\dfrac{64}{85}>\dfrac{43}{85}\Rightarrow\dfrac{64}{85}>\dfrac{1}{2}\)
\(\dfrac{17}{35}< \dfrac{17}{34}\Rightarrow\dfrac{17}{35}< \dfrac{1}{2}\)
\(\Rightarrow\dfrac{17}{35}< \dfrac{64}{85}\)
c) \(\dfrac{19}{31}>\dfrac{16}{31}\Rightarrow\dfrac{19}{31}>\dfrac{1}{2}\)
\(\dfrac{17}{35}< \dfrac{17}{34}\Rightarrow\dfrac{17}{35}< \dfrac{1}{2}\)
\(\Rightarrow\dfrac{17}{35}< \dfrac{19}{31}\)
d)
\(1-\dfrac{67}{77}=\dfrac{10}{77}\)
\(1-\dfrac{73}{83}=\dfrac{10}{83}\)
\(\dfrac{10}{77}>\dfrac{10}{83}\Rightarrow\dfrac{67}{77}< \dfrac{73}{83}\)
e)\(1-\dfrac{456}{461}=\dfrac{5}{461}\)
\(1-\dfrac{123}{128}=\dfrac{5}{128}\)
\(\dfrac{5}{461}< \dfrac{5}{128}\Rightarrow\dfrac{456}{461}>\dfrac{123}{128}\)
\(a,\dfrac{12}{49}< \dfrac{12}{47}< \dfrac{13}{47}\Rightarrow\dfrac{12}{49}< \dfrac{12}{47}\)
b, Ta có: \(\dfrac{17}{35}=\dfrac{51}{105}\)
\(\dfrac{64}{85}>\dfrac{64}{105}>\dfrac{51}{105}\Rightarrow\dfrac{64}{85}>\dfrac{51}{105}\) hay \(\dfrac{64}{85}>\dfrac{17}{85}\)
c,\(\dfrac{19}{31}>\dfrac{17}{31}>\dfrac{17}{35}\Rightarrow\dfrac{19}{31}>\dfrac{17}{35}\)
d, \(\dfrac{67}{77}+\dfrac{10}{77}=1\)
\(\dfrac{73}{83}+\dfrac{10}{83}=1\)
\(\dfrac{10}{77}>\dfrac{10}{83}\Rightarrow\dfrac{67}{77}< \dfrac{73}{83}\)
e, \(\dfrac{456}{461}+\dfrac{5}{461}=1\)
\(\dfrac{123}{128}+\dfrac{5}{128}=1\)
\(\dfrac{5}{461}< \dfrac{5}{128}\Rightarrow\dfrac{456}{461}>\dfrac{123}{128}\)
\(a,\dfrac{-15}{17}=-1+\dfrac{2}{17}\\ -\dfrac{19}{21}=-1+\dfrac{2}{21}\\ Vì:\dfrac{2}{17}>\dfrac{2}{21}\Rightarrow-1+\dfrac{2}{17}>-1+\dfrac{2}{21}\Rightarrow-\dfrac{15}{17}>-\dfrac{19}{21}\\ b,-\dfrac{24}{35}=-1+\dfrac{11}{35};-\dfrac{19}{30}=-1+\dfrac{11}{30}\\ Vì:\dfrac{11}{35}< \dfrac{11}{30}\Rightarrow-1+\dfrac{11}{35}< -1+\dfrac{11}{30}\\ \Rightarrow-\dfrac{24}{35}< -\dfrac{19}{30}\)