Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = \(\dfrac{2022.2023-1}{2022.2023}\) = \(\dfrac{2022.2023}{2022.2023}\) - \(\dfrac{1}{2022.2023}\) = 1 - \(\dfrac{1}{2022.2023}\)
B = \(\dfrac{2021.2022-1}{2021.2022}\) = \(\dfrac{2021.2022}{2021.2022}\) - \(\dfrac{1}{2021.2022}\) = 1 - \(\dfrac{1}{2021.2022}\)
Vì \(\dfrac{1}{2022.2023}\) < \(\dfrac{1}{2021.2022}\)
Nên A > B
b, C = \(\dfrac{2022.2023}{2022.2023+1}\)
C = \(\dfrac{2022.2023+1-1}{2022.2023+1}\) = \(\dfrac{2022.2023+1}{2022.2023+1}\) - \(\dfrac{1}{2022.2023+1}\)
C = 1 - \(\dfrac{1}{2022.2023+1}\)
D = \(\dfrac{2023.2024}{2023.2024+1}\) = \(\dfrac{2023.2024+1-1}{2023.2024+1}\)
D = 1 - \(\dfrac{1}{2023.2024+1}\)
Vì \(\dfrac{1}{2022.2023+1}\) > \(\dfrac{1}{2023.2024+1}\)
Nên C < D
\(\dfrac{2022.2023}{2022.2023}+1=1+1=2\)
\(\dfrac{2023.2024}{2023.2024}+1=1+1=2\)
Vậy: \(\dfrac{2022.2023}{2022.2023}+1=\dfrac{2023.2024}{2023.2024}+1\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)=2023x\)
\(\Rightarrow2022x+\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}+\dfrac{1}{2022}-\dfrac{1}{2023}\right)=2023x\)\(\Rightarrow2022x-2023x=-\left(1-\dfrac{1}{2023}\right)\)
\(\Rightarrow-x=-\dfrac{2022}{2023}\Leftrightarrow x=\dfrac{2022}{2023}\)
(x + 1/1.2) + (x + 1/2.3) + (x + 1/3.4) + ... + (x + 1/2022.2023) = 2023x
x + x + x + ... + x + 1/1.2 + 1/2.3 + ... + 1/2022.2023 = 2023x
2022x + 1 - 1/2 + 1/2 - 1/3 + ... + 1/2022 - 2023 = 2023x
2023x - 2022x = 1 - 1/2023
x = 2022/2023
Lời giải:
$A=1+2.3+3.4+4.5+...+2022.2023$
$3A=3+2.3(4-1)+3.4(5-2)+4.5(6-3)+....+2022.2023(2024-2021)$
$=3+2.3.4+3.4.5+4.5.6+...+2022.2023.2024-(1.2.3+2.3.4+3.4.5+...+2021.2022.2023)$
$=3+2022.2023.2024-1.2.3=2022.2023.2024-3$
$\Rightarrow A=2759728047$
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)
\(2A=2\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right)\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{101}}\)
\(2A-A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{100}}\)
\(A=1-\dfrac{1}{2^{100}}\)
b) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2023\cdot2024}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)
\(=1-\dfrac{1}{2024}\)
\(=\dfrac{2024}{2024}-\dfrac{1}{2024}\)
\(=\dfrac{2023}{2024}\)
\(3^{300}=\left(3^3\right)^{100}=27^{100}\)
\(5^{199}< 5^{200}\) mà \(5^{200}=25^{100}\)
\(25^{100}< 27^{100}\Rightarrow3^{300}>5^{200}>5^{199}\)
Trong hai phân số cùng tử nếu mẫu nào lớn hớn thì phân số đó bé hơn.
Vậy : \(\frac{1}{5^{199}}>\frac{1}{3^{300}}\)
-1/5<1/1000
vì -1/5 mang dấu âm
cón 1/1000 mang dấu dương
Ta có:
+)
\(\dfrac{2023.2024-1}{2023.2024}\\ =\dfrac{2023.2024}{2023.2024}-\dfrac{1}{2023.2024}\\ =1-\dfrac{1}{2023.2024}\)
+)
\(\dfrac{2022.2023-1}{2022.2023}\\ =\dfrac{2022.2023}{2022.2023}-\dfrac{1}{2022.2023}\\ =1-\dfrac{1}{2022.2023}\)
Nhận xét:
Vì \(2023.2024>2022.2023\) nên:
\(\dfrac{1}{2023.2024}< \dfrac{1}{2022.2023}\\\Rightarrow1-\dfrac{1}{2023.2024}>1-\dfrac{1}{2022.2023}\)
hay \(\dfrac{2023.2024-1}{2023.2024}>\dfrac{2022.2023-1}{2022.2023}\)
Vậy...