K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2016

a) a+n/b+n=a/b

vì a+n/b+n rút gọn n ta sẽ đc a/b

b) Nhân A với 10 ta được \(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}\)

\(10A=\frac{10^{12}-10}{10^{12}-1}\)

\(10A=\frac{10^{12}-1-9}{10^{12}-1}\)

\(10A=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}\)

Nhân B với 10 rồi giải tương tự như A ta được

\(10B=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}\)

ta thấy: 1012-1>1011+1\(\Rightarrow\frac{9}{10^{12}-1}<\frac{9}{10^{11}+1}\) ( vì 2 ps cùng tử ps nào có tử bé hơn thì ps đó lớn hơn)

=>10B>10A

=>B>A

21 tháng 5 2015

\(A=\frac{10}{a^m}+\frac{10}{a^n}\)

\(B=\frac{11}{a^m}+\frac{11}{a^n}=\left(\frac{10}{a^m}+\frac{10}{a^n}\right)+\left(\frac{1}{a^m}+\frac{1}{a^n}\right)\)

Vậy A < B

chọn đúng nhé !

 

9 tháng 6 2015

ta có A=\(\frac{10}{a^m}+\frac{10}{a^n}\)=\(\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^n}\)

B=\(\frac{11}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{1}{a^m}+\frac{9}{a^n}\)

do \(\frac{10}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}\)nên để so sánh A và B ta đi so sánh \(\frac{1}{a^n}\)và \(\frac{1}{a^n}\)

xét 2 trường hợp

th1) m=n => \(\frac{1}{a^m}=\frac{1}{a^n}\)=>A=B

th2) m>n=>\(\frac{1}{a^m}<\frac{1}{a^n}\)=>A>B

th3) m<n=>\(\frac{1}{a^m}>\frac{1}{a^n}\)=>A<B

28 tháng 4 2015

Ta có:

\(A=\frac{10}{a^m}+\frac{10}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^n}\)

\(B=\frac{11}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^m}\)

Cả 2 vế đều có \(\frac{10}{a^m}+\frac{9}{a^n}\) nên ta so sánh \(\frac{1}{a^n}\)và \(\frac{1}{a^m}\)

TH1:

Nếu m>n => a^m>a^n => 1/a^m<1/a^n => B<A

TH2:

Nếu m<n =>a^m<a^n => 1/a^m>1/a^n => B>A

TH3:

Nếu m=n => a^m=a^n => 1.a^m=1/a^n => A=B

 

 

Ta có:

A=10/am+10/an=10/am+9/an+1/an

B=11/am+9/an=10/am+9/an+1/am

Cả 2 vế đều có 10/am+9/an nên ta so sánh 1/an và 1/am 

TH1:

Nếu m>n => a^m>a^n => 1/a^m<1/a^n => B<A

TH2:

Nếu m<n =>a^m<a^n => 1/a^m>1/a^n => B>A

TH3:

Nếu m=n => a^m=a^n => 1.a^m=1/a^n => A=B

29 tháng 6 2018

n lớn hơn 2 và ko chia hết cho 3 nên n tồn tại dưới 2 dạng là 3k+1 hoặc 3k+2
Nếu n có dạng 3k + 2
n^2 + 1 = ( 3k + 2 )^2 + 1 = 9k^2 + 12k + 5
n^2 - 1 = 9k^2 + 12k + 3 chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Nếu n có dạng 3k + 1
n^2 + 1= ( 3k + 1 )^2 + 1 = 9k^2 + 6k + 2
n^2 - 1= ( 3k + 1 )^2 - 1 = 9k^2 + 6k chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Vậy với n thuộc N , n > 2 và ko chia hết cho 3 thì n^2 + 1 và n^2 - 1 ko thể đồng thời là số nguyên tố

29 tháng 6 2018

thanks