\(P=\frac{1}{1999}+\frac{2}{1999^2}+\frac{3}{1999^3}+...+\frac{2010}{1999^{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

2222222222222222222222222

13 tháng 11 2016

2222222222222222222

12 tháng 4 2018

\(C=\frac{1999^{2000}+1}{1999^{1999}+1}< \frac{1999^{1999}+1+1998}{1999^{2000}+1+1998}\)

\(=\frac{1999^{1999}+1999}{1999^{2000}+1999}\)

\(=\frac{1999\cdot(1999^{1998}+1)}{1999\cdot(1999^{1999}+1)}\)

\(=\frac{1999^{1999}+1}{1999^{1998}+1}=D\)

Vậy...

1 tháng 11 2016

giờ trả lời còn được tick ko bạn

4 tháng 11 2016

được mà bn

21 tháng 7 2017

bài trên không sai đâu

12 tháng 4 2018

không sai đâu nhé

28 tháng 7 2019

\(Tagọi\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\) 

là A 

=> a>0

ta thấy \(\frac{1}{5}\)+ a sẽ lớn hơn \(\frac{1}{5}\)(vì a>0)

=> đpcm

11 tháng 4 2018

A<B đó bn.

11 tháng 4 2018

A và B khi tính ra sẽ ra số rất lớn ko thể so sánh vì vậy

ta lấy số mũ :

_ A sẽ có số mũ là 2001 và 2002

_ B sẽ có số mũ là 2001 và 2000

A và B sẽ có 2001 = 2001 còn 2002 > 2000

=> A > B

chúc bạn học giỏi

2 tháng 4 2017

=4,034224056 mình cũng ko chắc nữa nhưng tịk giúp mình nha