\(\frac{1}{1^2}\)+ \(\frac{1}{2^2}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

P = 1+1/2x2+1/3x3+...+1/2014x2014.

 Mà: 1/2x2 bé hơn 1/1x2; 1/3x3 bé hơn 1/2x3; 1/2014x2014 bé hơn 1/2013x2014.

P = 1+1/2x2+1/3x3+...+1/2014x2014 bé hơn 1+1/1x2+1/2x3+...+1/2013x2014 = 1+1-1/2+1/2-1/3+...+1/2013-1/2014 = 1+1-1/2014 = 4027/2014;                    Q = 7/4.(Bạn tự tính nhá)

 Suy ra P lớn hơn Q.

        

23 tháng 4 2017

Ai trả lời giúp mik nha

5 tháng 2 2020

BÀI 1:

\(P=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{2^{100}-1}\)

\(\Leftrightarrow A=1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{2^{100}-1}+\frac{1}{2^{100}}-\frac{1}{2^{100}}\)

\(\Leftrightarrow A=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+........+\left(\frac{1}{2^{99}+1}+.......+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>1+\frac{1}{2}+\frac{1}{2^2}\cdot2+\frac{1}{2^3}\cdot2^2+........+\frac{1}{2^{100}}\cdot2^{99}-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>1+\frac{1}{2}\cdot100-\frac{1}{2^{100}}\)

\(\Leftrightarrow A>51-\frac{1}{2^{100}}>51-1=50\)

\(\Rightarrow DPCM\)

BÀI 2 :

TA CÓ: \(A=1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{100}}\)VÀ \(B=2\)

= > CẦN CHỨNG MINH \(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)NHƯ THẾ NÀO SO VỚI 1

ĐẶT \(C=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)

\(\Leftrightarrow2C=1+\frac{1}{2}+.......+\frac{1}{2^{99}}\)

\(\Leftrightarrow2C-C=\left(1+\frac{1}{2}+.....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+.....+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow C=1-\frac{1}{2^{100}}>1\)

\(\Rightarrow A>B\)

24 tháng 3 2019

1) Tìm x

\(\frac{11}{2}.x+\frac{1}{3}.x=1\)

\(\Rightarrow x\left(\frac{11}{2}+\frac{1}{3}\right)=1\)

\(\Rightarrow x\left(\frac{33}{6}+\frac{2}{6}\right)=1\)

\(\Rightarrow x.\frac{35}{6}=1\)

\(\Rightarrow x=\frac{6}{35}\)

2) So sánh

\(\frac{59}{40}< \frac{50}{31}\)( cái này bạn quy đồng là ra, mik chỉ ghi kq, bạn tự tính )

3)\(\frac{1}{3}+\frac{4}{7}-\frac{5}{14}-\frac{1}{2}-\frac{2}{3}\)

\(=\left(\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{4}{7}-\frac{5}{14}\right)-\frac{1}{2}\)

\(=-\frac{1}{3}+\frac{3}{14}-\frac{1}{2}\)

\(=-\frac{13}{21}\)

24 tháng 3 2019

1)\(\frac{11}{2}.x+\frac{1}{3}.x=1\)

\(x.\left(\frac{11}{2}+\frac{1}{3}=1\right)\)

\(x.\frac{35}{6}=1\)

\(x=1:\frac{35}{6}\)

\(x=\frac{6}{35}\)

2) Ta có:

\(\frac{59}{40}=\frac{1829}{1240}\)

\(\frac{50}{31}=\frac{2000}{1240}\)

Vì \(2000>1829\Rightarrow\frac{2000}{1240}>\frac{1829}{1240}\Rightarrow\frac{50}{31}>\frac{59}{40}\)

3)\(\frac{1}{3}+\frac{4}{7}-\frac{5}{14}-\frac{1}{2}-\frac{2}{3}\)

\(=\left(\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{4}{7}-\frac{5}{14}-\frac{1}{2}\right)\)

\(=-\frac{1}{3}+\left(\frac{8}{14}-\frac{5}{14}-\frac{7}{14}\right)\)

\(=\frac{-1}{3}+\frac{-4}{14}\)

\(=\frac{-1}{3}+\frac{-2}{7}\)

\(=\frac{-7}{21}+\frac{-6}{21}\)

\(=\frac{-13}{21}\)

23 tháng 6 2020

A = \(\frac{1}{3}-\frac{3}{4}-\frac{-3}{5}+\frac{1}{73}-\frac{1}{36}+\frac{1}{15}+\frac{-2}{9}\)

A = \(\left(\frac{1}{3}-\frac{2}{9}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)+\frac{1}{73}\)

A = \(\left(\frac{3-2}{9}\right)-\left(\frac{27+1}{36}\right)+\left(\frac{9+1}{15}\right)+\frac{1}{73}\)

A  = \(\frac{1}{9}-\frac{7}{9}+\frac{6}{9}+\frac{1}{73}\)

A = \(0+\frac{1}{73}=\frac{1}{73}\)

23 tháng 6 2020

Làm

B = 1/3 - 3/4 - (-3)/5 + 1/73 - 1/36 + 1/15 + -2/9 

B = 1/3 -3/4 + 3/5 +1/73 -  1/36 + 1/15 -2/9 

B = [ 1/3 + 3/5 + 1/15 ] + [ -3/4 - 1/36 -2/9] + 1/73

B = [ 5/15 + 9/15 + 1/15 ] + [ -27/36 - 8/36 - 1/36 ] + 1/73

B = 1 + (-1) + 1/73 

B = 1/73

HỌC TỐT Ạ

23 tháng 6 2020

3 ti k r nha !

24 tháng 6 2020

 P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\) 

P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)

P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)

P\(=\frac{1.51}{50.2}=\frac{51}{100}\)