\(\frac{2017^{2015}+1}{2017^{2015}-1}\)và  N = 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

Ta có: \(M=\frac{2017^{2015}+1}{2017^{2015}-1}=\frac{2017^{2015}-1+2}{2017^{2015}-1}=1+\frac{2}{2017^{2015}-1}\)

\(N=\frac{2017^{2015}-5}{2017^{2015}-3}=\frac{2017^{2015}-3-2}{2017^{2015}-3}=1-\frac{2}{2017^{2015}-3}\)

Vì \(\frac{2}{2017^{2015}-1}>-\frac{2}{2017^{2015}-3}\)nên M>N

13 tháng 4 2017

M>N vì:

phân số M>1

phân số N<1

26 tháng 3 2017

Áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)ta có:

\(B=\frac{2015^{2017}+1}{2015^{2018}+1}< \frac{2015^{2017}+1+2014}{2015^{2018}+1+2014}=\frac{2015^{2017}+2015}{2015^{2018}+2015}\)

\(=\frac{2015\left(2015^{2016}+1\right)}{2015\left(2015^{2017}+1\right)}=\frac{2015^{2016}+1}{2015^{2017}+1}\)

\(\Rightarrow\frac{2015^{2017}+1}{2015^{2018}+1}< \frac{2015^{2016}+1}{2015^{2017}+1}\)

Vậy \(B< A\)

Hay \(A>B\)

4 tháng 5 2018

\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)

\(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Ta có:

\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

Cộng vế theo vế, ta có:

\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(hay\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Vậy A >  B

28 tháng 5 2021
Bạn có nhầm không, tớ thấy cả hai đều giống nhau mà, Hai cái bằng nhau
26 tháng 4 2016

a)

A=B

b)

N>M

26 tháng 4 2016

a, A và B bằng nhau

b, N>M

26 tháng 4 2018

\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\)\(\frac{2017}{2016+2017+2018}\)

ta có :

\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

nên \(P>Q\)

26 tháng 4 2018

Q=2015+2016+2017/2016+2017+2018=+2018+2016/2016+2017+2018+2017/2016+2017+2018
vì 2015/2016>2015/2016+2017+2018[1]
2016/2017>2016+2017+2018[2]
2017/2018>2016+2017+2018[3]
từ [1] [2] [3] suy ra P>Q

6 tháng 4 2017

Vì \(2015^{2016}+1< 2015^{2017}+1\Rightarrow\frac{2015^{2016}+1}{2015^{2017}+1}< 1\)

\(\Rightarrow A=\frac{2015^{2016}+1}{2015^{2017}+1}< \frac{2015^{2016}+1+2014}{2015^{2017}+1+2014}=\frac{2015\left(2015^{2015}+1\right)}{2015\left(2015^{2016}+1\right)}=\frac{2015^{2015}+1}{2015^{2016}+1}=B\)

Vậy \(A< B\)

6 tháng 4 2017

\(2015A=\frac{2015^{2017}+2015}{2015^{2017}+1}=\frac{2015^{2017}+1+2014}{2015^{2017}+1}=1+\frac{2014}{2015^{2017}+1}\)

\(2015B=\frac{2015^{2016}+2015}{2015^{2016}+1}=\frac{2015^{2016}+1+2014}{2015^{2016}+1}=1+\frac{2014}{2015^{2016}+1}\)

vì \(\frac{2014}{2015^{2017}+1}< \frac{2014}{2015^{2016}+1}\)

nên \(2015A< 2015B\)

=> \(B>A\)

5 tháng 5 2018

=.....nha các bn. k mình nha

5 tháng 5 2018

Ta có : \(B=\frac{2015+2016+2017}{2016+2017+2018}\) \(=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

       \(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

        \(\frac{2017}{2018}>\frac{2017}{2016+2017+2016}\)

Cộng vế theo vế, ta có : 

\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

19 tháng 4 2015

Dấu < nhé!

2 tháng 5 2016

2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017