Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nhầm câu b:
Áp dụng....
A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)
=10^10+1/10^11+1=B
Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)
a) Với a<b=>a+n/b+n >a/b
Với a>b=>a+n/b+n<a/b
Với a=b=>a+n/b+n=a/b
b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:
A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]
=(10^10)+1/(10^11)+1=B
Vậy A=B
Trước hết ta hãy so sánh :
\(\dfrac{10^{100}+1}{10^{101}+1}\)với \(\dfrac{10^{100}+1}{10^{102}+1}\)
Ta có: Cả hai phân số trên cùng tử.
\(\Rightarrow\dfrac{10^{100}+1}{10^{101}+1}>\dfrac{10^{100}+1}{10^{102}+1}\)
Tiếp đó so sánh : \(\dfrac{10^{101}+1}{10^{102}+1}\)với \(1\)
Ta được: \(\dfrac{10^{101}+1}{10^{102}+1}< 1\)
Ta lại so sánh được:\(\dfrac{10^{100}+1}{10^{102}+1}< 1\) (*)
Từ (*) suy ra \(\dfrac{10^{100}+1}{10^{101}+1}< \dfrac{10^{101}+1}{10^{102}+2}< \dfrac{10^{101}+1}{10^{102}+1}< 1\Rightarrow\dfrac{10^{100}+1}{10^{101}+1}< \dfrac{10^{101}+1}{10^{102}+1}\)
Ngoài ra còn một cách như sau:
\(\dfrac{10^{101}+1}{10^{102}+1}=\dfrac{10^{\left(100+1\right)}+1}{10^{\left(101+1\right)}+1}=\dfrac{10}{10}.\dfrac{10^{100}+1}{10^{101}+1}>\dfrac{10^{100}+1}{10^{101}+1}\) hay B > A hay A < B
Bài 1:
d)
\(\dfrac{x+5}{95}+\dfrac{x+10}{90}+\dfrac{x+15}{85}+\dfrac{x+20}{80}=-4\)
\(\Leftrightarrow\dfrac{x+5}{95}+1+\dfrac{x+10}{90}+1+\dfrac{x+15}{85}+1+\dfrac{x+20}{80}+1=-4+1+1+1+1\)
\(\Leftrightarrow\dfrac{x+100}{95}+\dfrac{x+100}{90}+\dfrac{x+100}{85}+\dfrac{x+100}{80}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{95}+\dfrac{1}{90}+\dfrac{1}{85}+\dfrac{1}{80}\right)=0\)
\(\Leftrightarrow x+100=0\) ( vì: \(\dfrac{1}{95}+\dfrac{1}{90}+\dfrac{1}{85}+\dfrac{1}{80}\ne0\))
\(\Leftrightarrow x=-100\)
9: \(=1-\dfrac{1}{99}+1-\dfrac{1}{100}+\dfrac{100}{101}\cdot\dfrac{1-4+3}{12}=2-\dfrac{199}{9900}=\dfrac{19601}{9900}\)
10: \(=\left(\dfrac{78}{79}+\dfrac{79}{80}+\dfrac{80}{81}\right)\cdot\dfrac{6+5+9-20}{30}=0\)
+> Ta đi chứng minh tính chất \(\frac{a}{b}>1\)thì \(\frac{a}{b}>\frac{a+c}{b+c}\)
Có\(\frac{a}{b}>1\Rightarrow a>b\)
\(\Rightarrow ac>bc\) \(\Rightarrow ac+ab>bc+ab\)\(\Rightarrow a\left(b+c\right)>b\left(a+c\right)\)\(\Rightarrow\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(1\right)\)
+> Aps dụng tính chất (1) vào b thức B ta có:
\(B=\frac{100^{10}-1}{100^{10}-3}>\frac{100^{10}-1+2}{100^{10}-3+2}=\frac{100^{10}+1}{100^{10}-1}\)
\(\Rightarrow B>\frac{100^{10}+1}{100^{10}-1}\)
\(\Rightarrow B>A\)
Vậy \(B>A\)
Ta có :
\(10A=\dfrac{10\left(10^{1990}+1\right)}{10^{1991}+1}=\dfrac{10^{1991}+10}{10^{1991}+1}=\dfrac{10^{1991}+1+9}{10^{1991}+1}=1+\dfrac{9}{10^{1991}+1}\left(1\right)\)
\(10B=\dfrac{10\left(10^{1991}+1\right)}{10^{1992}+1}=\dfrac{10^{1992}+10}{10^{1992}+1}=\dfrac{10^{1992}+1+9}{10^{1992}+1}=1+\dfrac{9}{10^{1992}+1}\left(2\right)\)
Lại có : \(1+\dfrac{9}{10^{1991}+1}>1+\dfrac{9}{10^{1992}+1}\)
\(\Leftrightarrow10A>10B\Leftrightarrow A>B\)
Vậy...
Ta có A = \(\frac{10^{100}-1}{10^{98}-1}=\frac{10^{98}.10^2-10^2+99}{10^{98}-1}\)
\(=\frac{10^2\left(10^{98}-1\right)+99}{10^{98-1}}\)
\(=10^2+\frac{99}{10^{98}-1}\)
B= \(\frac{10^{101}-1}{10^{99}-1}=\frac{10^{99}.10^2-10^2+99}{10^{99}-1}\)
\(=\frac{10^2\left(10^{99}-1\right)+99}{10^{99}-1}\)
\(=10^2+\frac{99}{10^{99}-1}\)
Vì \(\frac{99}{10^{98}-1}>\frac{99}{10^{99}-1}\)nên \(10^2+\frac{99}{10^{98}-1}>10^2+\frac{99}{10^{99}-1}\)=> A > B
Vậy A > B
a) \(\dfrac{n}{3n+1}=\dfrac{2.n}{2\left(3n+1\right)}=\dfrac{2n}{6n+2}\)
Vì \(\dfrac{2n}{6n+2}< \dfrac{2n}{6n+1}\Leftrightarrow\dfrac{n}{3n+1}< \dfrac{2n}{6n+1}\)
b) Áp dụng công thức :
\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\left(a;b;m\in N\cdot\right)\)
Ta có :
\(B=\dfrac{10^8+1}{10^9+1}< 1\)
\(\Leftrightarrow B=\dfrac{10^8+1}{10^9+1}< \dfrac{10^8+1+9}{10^9+1+9}=\dfrac{10^8+10}{10^9+10}=\dfrac{10\left(10^7+1\right)}{10\left(10^8+1\right)}=\dfrac{10^7+1}{10^8+1}=A\)
\(\Leftrightarrow B< A\)
Ta có:
\(\dfrac{n}{3n+1}=\dfrac{2n}{2\left(3n+1\right)}=\dfrac{2n}{6n+2}\)
\(\dfrac{2n}{6n+2}< \dfrac{2n}{6n+1}\Rightarrow\dfrac{n}{3n+1}< \dfrac{2n}{6n+1}\)
Ta có:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{10^8+1}{10^9+1}< 1\)
\(\Rightarrow B< \dfrac{10^8+1+9}{10^9+1+9}\Rightarrow B< \dfrac{10^8+10}{10^9+10}\Rightarrow B< \dfrac{10\left(10^7+1\right)}{10\left(10^8+1\right)}\Rightarrow B< \dfrac{10^7+1}{10^8+1}=A\)\(\Rightarrow B< A\)
M=\(\dfrac{10^{100^{ }}+1}{10^{101}+1}\)
M=\(\dfrac{10^{99+1}+1}{10^{100+1}+1}\)
M=\(\dfrac{10^{99}.10+1}{10^{100}.10+1}\)
N=\(\dfrac{10^{99^{ }}+1}{10^{100}+1}\)
=>M lớn hơn N
M>N,vì:\(\dfrac{10^{100}+1}{10^{101}+1}=\dfrac{10^{100}}{10^{101}}\)
\(\dfrac{10^{99}+1}{10^{100}+1}=\dfrac{10^{99}}{10^{100}}\)
\(\dfrac{10^{100}}{10^{101}}>\dfrac{10^{99}}{10^{100}}\)