Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)
=>N<M
\(N=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=M\)
\(N=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\\ N=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=M\)
Câu 21: So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
A. M > N B. M < N C. M = N D. M = N – 1
Câu 22: Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8x
A. 5 B. -5 C. 8 D.-8
Câu 23: Biểu thức E = x2 – 20x +101 đạt giá trị nhỏ nhất khi
A. x = 9 B. x = 10 C. x = 11 D.x = 12
Câu 24: Kết quả của phép chia 15x3y4 : 5x2y2 là
A. 3xy2 B. -3x2y C. 5xy D. 15xy2
Câu 25: Kết quả của phép chia (6xy2 + 4x2y – 2x3) : 2x là
A. 3y2 + 2xy – x2 B. 3y2 + 2xy + x2 C. 3y2 – 2xy – x2 D. 3y2 + 2xy
\(N=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{1008}+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{1008}+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{1008}+1\right)=2^{2016}-1< 2^{2016}=M\)
a, vì m>n
=> m+7>n+7
b, vì m>n
=> -2m<-2n
=>-2m-8<-2n-8
c, vì m>n
=>m+1>n+1
mà m+3>m+1
=>m+3>n+1
phần d,e,f máy mình cùi nên không hiện ra phép tính. sr nhiều
m>n
a) m+7 và m+7
ta có : m>n
=> m+7 > n+7
b) -2m+8 và -2n+8
ta có : m>n
=> -2m > -2n
=> -2m+8 > -2n+8
c) m+3 và m+1
ta có : 3 >1
=> m+3 > m+1
d) \(\dfrac{1}{2}\) \(\left(m-\dfrac{1}{4}\right)\)và\(\dfrac{1}{2}\)\(\left(n-\dfrac{1}{4}\right)\)
ta có: m > n
=> \(m-\dfrac{1}{4}\) > \(n-\dfrac{1}{4}\)
=>\(\dfrac{1}{2}\left(m-\dfrac{1}{4}\right)\)>\(\dfrac{1}{2}\left(n-\dfrac{1}{4}\right)\)
e) \(\dfrac{4}{5}-6\)m và \(\dfrac{4}{5}-6n\)
ta có : m > n
=> -6m > -6n
=> \(\dfrac{4}{5}-6m>\dfrac{4}{5}-6n\)
f) \(-3\left(m+4\right)+\dfrac{1}{2}\) và \(-3\left(n+4\right)+\dfrac{1}{2}\)
ta có : m > n
=> m=4 > n+4
=> -3(m+4) > -3(m+4)
=>\(-3\left(m+4\right)+\dfrac{1}{2}>-3\left(n+4\right)+\dfrac{1}{2}\)
\(1,\)
\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)
Với \(n=k+1\)
\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)
Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)
Theo pp quy nạp ta được đpcm
\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)
Với \(n=k+1\)
\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)
Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)
Theo pp quy nạp ta được đpcm
\(1,\)
\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)
Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)
\(d,D=1^n+2^n+5^n+8^n\)
Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)
Ta có
N = ( 2 + 1 ) ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) ( 2 16 + 1 ) = 3 ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = [ ( 2 2 – 1 ) ( 2 2 + 1 ) ] ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = ( 2 4 – 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = ( 2 8 – 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = ( 2 16 - 1 ) ( 2 16 + 1 ) = 2 16 2 − 1 = 2 32 − 1 M à 2 32 − 1 > 2 32 ⇒ N < M
Đáp án cần chọn là: A