Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta cs: \(\frac{a+2006}{a-2006}=\frac{b+2005}{b-2005}\)
\(\Rightarrow\frac{a+2006}{b+2005}=\frac{a-2006}{b-2005}=\frac{a}{b}=\frac{2006}{2005}\)
=> dpcm
\(2005a=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)
\(2005b=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}=1+\frac{2004}{2005^{2005}+1}\)
Ta thấy :\(2005^{2006}+1>2005^{2005}+1\)
\(\Rightarrow\frac{2004}{2005^{2006}+1}< \frac{2004}{2005^{2005}+1}\)
\(\Rightarrow1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)
\(\Rightarrow2005a< 2005b\)
\(\Rightarrow a< b\)
\(\sqrt{2005+2006}^2=2005+2006=4011\)
\(\left(\sqrt{2005}+\sqrt{2006}\right)^2=2005+2\sqrt{2005}.\sqrt{2006}+2006=4011+2\sqrt{2005}.\sqrt{2006}\)
Vì \(2\sqrt{2005}.\sqrt{2006}>0\) nên =>\(4011<4011+2\sqrt{2005}.\sqrt{2006}\)=>\(\sqrt{2005+2006}<\sqrt{2005}+\sqrt{2006}\)
Ta có :
\(x=2005\Rightarrow x+1=2006\)
Thay \(2006=x+1\) vào biểu thức trên ta được :
\(x^{2005}-\left(x+1\right)x^{2004}+\left(x+1\right)x^{2003}-\left(x+1\right)x^{2002}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2005}-x^{2005}+x^{2004}-x^{2004}+x^{2003}-...-x^3+x^2-x^2+x-1\)
\(=x-1\) mà \(x=2005\)
\(\Rightarrow x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1=2005-1=2004\)
Lời giải:
Xét công thức tổng quát:
$1+2+3+...+n=\frac{n(n+1)}{2}$
$\Rightarrow 1-\frac{1}{1+2+3+...+n}=1-\frac{2}{n(n+1)}=\frac{(n-1)(n+2)}{n(n+1)}$
Thay $n=2,3,...,2006$ ta thu được:
\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{2005.2008}{2006.2007}\)
\(=\frac{(1.2.3...2005)(4.5.6...2008)}{(2.3.4...2006)(3.4.5...2007)}=\frac{1}{2006}.\frac{2008}{3}=\frac{1004}{3009}\)
Lời giải:
Xét công thức tổng quát:
$1+2+3+...+n=\frac{n(n+1)}{2}$
$\Rightarrow 1-\frac{1}{1+2+3+...+n}=1-\frac{2}{n(n+1)}=\frac{(n-1)(n+2)}{n(n+1)}$
Thay $n=2,3,...,2006$ ta thu được:
\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{2005.2008}{2006.2007}\)
\(=\frac{(1.2.3...2005)(4.5.6...2008)}{(2.3.4...2006)(3.4.5...2007)}=\frac{1}{2006}.\frac{2008}{3}=\frac{1004}{3009}\)
\(\left(\frac{2006-2005}{2006+2005}\right)^2=\frac{2006^2-2005^2}{2006^2+2005^2}.\)
Vì \(\frac{2006^2-2005^2}{2006^2+2005^2}=\frac{2006^2+2005^2}{2006^2+2005^2}\)nên => \(\left(\frac{2006-2005}{2006+2005}\right)^2=\frac{2006^2-2005^2}{2006^2+2005^2}.\)