\(\left(2002^{2002}+2003^{2002}\right)^{2003}\)và\(\left(200...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

ai có lòng tick tôi lên 15 tôi cảm ơn nếu ko tick thì số đen sẽ đến với bn

24 tháng 5 2016

A=2001/2002+2002/2003

B=2001/2002+2003+2002/2002+2003

(tớ tách B ra đấy)

mà 2001//2002+2002/2003>2001/2002+2003+ 202/2002+2003

A>B

31 tháng 3 2017

ĐK: \(x\in Z\)

a) Giải:

Để \(A\) đạt giá trị lớn nhất

\(\Leftrightarrow\dfrac{2002}{\left|x\right|+2002}\) đạt giá trị lớn nhất

\(\Leftrightarrow\left|x\right|+2002\) phải nhỏ nhất \(\Leftrightarrow\left|x\right|=0\)

\(\Rightarrow A_{Max}=\dfrac{2002}{0+2002}=\dfrac{2002}{2002}=1\)

Vậy giá trị lớn nhất của \(A\)\(1\)

b) Để \(B\) đạt giá trị lớn nhất

\(\Leftrightarrow\dfrac{\left|x\right|+2002}{-2003}\) phải lớn nhất

\(\left\{{}\begin{matrix}\left|x\right|+2002>0\\-2003< 0\end{matrix}\right.\)\(\Rightarrow\dfrac{\left|x\right|+2002}{-2003}< 0\)

\(\forall-a< 0\) nếu muốn \(-a\) lớn nhất \(\Leftrightarrow a\) nhỏ nhất

\(\Leftrightarrow\left|x\right|+2002\) phải nhỏ nhất \(\Leftrightarrow\left|x\right|=0\)

\(\Rightarrow B_{Max}=\dfrac{0+2002}{-2003}=\dfrac{2002}{-2003}\)

Vậy giá trị lớn nhất của \(B\)\(\dfrac{2002}{-2003}\)

30 tháng 3 2017

mọi người ơi giúp với ạ khocroi

23 tháng 9 2016

\(\left(7^{2003}+7^{2002}\right):\left(7^{2001}.7\right)\)

\(=\left(7^{2003}+7^{2002}\right):7^{2002}\)

\(=7^{2003}:7^{2002}+7^{2002}:7^{2002}\)

\(=7^{2003}:7^{2002}+1\)

\(=7^{2002}.7:7^{2002}.1+1\)

\(=7^{2002}.\left(7-1\right)+1\)

\(=7^{2002}.6+1\)

23 tháng 9 2016

Ta có: \(\left(7^{2003}+7^{2002}\right):\left(7^{2001}.7\right)\)

\(\Rightarrow\left(7^{2003}+7^{2002}\right):7^{2002}\)

\(\Rightarrow7^{2002}:7^{2003}+7^{2002}:7^{2002}\)

Tự tính tiếp nha

11 tháng 5 2016

ta có \(\frac{2000+2002}{2001+2003}\)\(\frac{2000}{2001+2003}\)\(\frac{2002}{2001+2003}\)=\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)

ta có \(\frac{2000}{2001}\)>\(\frac{2000}{4004}\) và \(\frac{2002}{2003}\)\(\frac{2002}{4004}\)

 nên \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)

vậy \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000+2002}{2001+2003}\)

11 tháng 5 2016

\(\frac{2000+2002}{2001+2003}=\frac{2000}{2001+2003}+\frac{2002}{2001+2003}< \frac{2000}{2001}+\frac{2002}{2003}\)

13 tháng 7 2015

\(\left(7^{2005}+7^{2004}\right):7^{2004}=7^{2005}:7^{2004}+7^{2004}:7^{2004}=7+1=8\)

\(\left(11^{2003}+11^{2002}\right):11^{2002}-11^{2003}:11^{2002}+11^{2002}:11^{2002}=11+1=12\)

10 tháng 1 2019

a=75

b=15

2 tháng 12 2015

(tạm trình bày vậy vì phần đánh văn bản còn yếu, bạn hểu và trình bày đúng lại giúp mình nhé) 

A:

20032003+1=20032002.2003+1=20032002+1

20032004+1=20032002.2003.2003+1=20032002.2003+1(loại số 2003 thứ hai của cả mẫu số và tử số)  

B:

20032002+1=20032002+1

20032003+1=20032002.2003+1

Suy ra: A=B

 

2 tháng 3 2016

Bạn làm sai