Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{81}\right)\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{99}{100}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}...\dfrac{9.11}{10.10}=\left(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{9}{10}\right).\left(\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{11}{10}\right)=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)
\(B=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{9}\right)\left(1+\dfrac{1}{9}\right)\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\\ B=\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{8}{9}\cdot\dfrac{9}{10}\right)\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{10}{9}\cdot\dfrac{11}{10}\right)\\ B=\dfrac{1}{10}\cdot\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)
Ta có :
\(M=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{99}{100}=\frac{3.8.15.....99}{4.9.16.....100}=\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4.....10.10}\)\(=\frac{1.2.3...9}{2.3...10}.\frac{3.4...11}{2.3...10}=\frac{1}{10}.\frac{11}{2}=\frac{11}{20}< \frac{11}{19}\)
ta có M = (1- 1/4) (1- 1/9)... ( 1- 1/100)
= 3/2^2.8/3^2 ... 99/10^2
= 1.3/2^2 . 2.4/3^2 ... 9.11/10^ 2
= 1.2.3...9/ 2.3.4...10 . 3.4.5... 11/ 2.3.4... 10
= 1/10 . 11/2 = 11/20 < 11/19
Vậy M < 11/19
\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{81}\right).\left(1-\frac{1}{100}\right)\)
\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{80}{81}.\frac{99}{100}\)
\(B=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{8.10}{9.9}.\frac{9.11}{10.10}\)
\(B=\frac{1.2.3...8.9}{2.3.4...9.10}.\frac{3.4.5...10.11}{2.3.4...9.10}\)
\(B=\frac{1}{10}.\frac{11}{2}\)
\(B=\frac{11}{20}>\frac{11}{21}\)
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
a) ta có: (-32)9 = [(-2)5 ]9 = (-2)45 = - (2)45
(-16)13 = - [ 24 ]13 = - (2)52
=> ....
b) ta có: (-5)30 = 530 = (53)10 = 12510
(-3)50 = 350 = (35)10 = 24310
=> ....
c) ta có: (-32)9 = (-2)45 = (-2)13 . 232
(-18)13 = [(-2).32 ]13 = (-2)13 . 339
=> ....
d) ta có: \(\left(-\frac{1}{16}\right)=-\left(\frac{1}{2}\right)^4.\)
\(\left(-\frac{1}{2}\right)=-\left(\frac{1}{2}\right)^1< -\left(\frac{1}{2}\right)^4\)
Ta có: \(32^{27}=\left(2^5\right)^{27}=2^{135}\)
\(16^{39}=\left(2^4\right)^{39}=2^{156}\)
mà \(2^{135}< 2^{156}\)
nên \(32^{27}< 16^{39}\)
mà \(16^{39}< 18^{39}\)
nên \(32^{27}< 18^{39}\)
\(\Leftrightarrow-32^{27}>-18^{39}\)
\(\Leftrightarrow\left(-32\right)^{27}>\left(-18\right)^{39}\)
Ta có:
\(\left(-16\right)^{11}=-16^{11}=-\left(2^4\right)^{11}=-2^{4\cdot11}=-2^{44}\)
\(\left(-32\right)^9=-32^9=-\left(2^5\right)^9=-2^{5\cdot9}=-2^{45}\)
Mà: \(44< 45\)
\(\Rightarrow2^{44}< 2^{45}\)
\(\Rightarrow-2^{44}>-2^{45}\)
(−16)11=−1611=−(24)11=−24⋅11=−244
(−32)9=−329=−(25)9=−25⋅9=−245(−32)9=−329=−(25)9=−25⋅9=−245
Mà 44<4544<45
⇒244<245⇒244<245
⇒−244>−245⇒−2 44>−245