K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

Ta có: \({\left( {{{15}^3}} \right)^2}\) = 153 . 153 = 153+3 = 156

\({15^{3.2}}\) = 156

Vậy \({\left( {{{15}^3}} \right)^2}\) = \({15^{3.2}}\)

17 tháng 9 2021

Ta có:

\(\left(\dfrac{1}{10}\right)^{15}=\left(\left(\dfrac{1}{10}\right)^3\right)^5=\left(\dfrac{1}{1000}\right)^5\)

\(\left(\dfrac{3}{10}\right)^{20}=\left(\left(\dfrac{3}{10}\right)^4\right)^5=\left(\dfrac{81}{10000}\right)^5\)

17 tháng 9 2021

Ta có: \(\left(\dfrac{1}{10}\right)^{15}=\left(\dfrac{1}{10}^3\right)^5=\left(\dfrac{1}{1000}\right)^5\)

\(\left(\dfrac{3}{10}\right)^{20}=\left(\dfrac{3}{10}^4\right)^5=\left(\dfrac{3}{10000}\right)^5\)

Vì \(\dfrac{1}{1000}>\dfrac{3}{10000}\) nên \(\left(\dfrac{1}{10}\right)^{15}>\left(\dfrac{3}{10}\right)^{20}\)

26 tháng 2 2017

chấm ở câu b)  phép nhân à 

26 tháng 2 2017

b)-47/8 hoặc là bằng -10,23711618

3 tháng 9 2019

a. \(\frac{15^3.\left(-5\right)^4}{\left(-3\right)^5.5^6}=\frac{3^3.5^3.5^4}{\left(-3\right)^5.5^6}\)

\(=\frac{3^3.5^7}{\left(-3\right)^5.5^6}=\frac{5}{-9}\)

b. \(\frac{6^3.2^5.\left(-3\right)^2}{\left(-2\right)^9.3^7}=\frac{2^3.3^3.2^5.3^2}{\left(-2\right)^9.3^7}\)

\(=\frac{2^8.3^5}{\left(-2\right)^9.3^7}=\frac{1}{\left(-2\right).3^2}=-\frac{1}{18}\)

a) ta có A=\(15^{120}:25^{60}=3^{120}.5^{120}:5^{120}=3^{120}=9^{60}\)

B=\(2^{45}.2^{15}.4^{60}=2^{60}.2^{120}=2^{180}=8^{60}\)

-> A<B

b) bạn chỉ cần tính từng cái ra là dc ý ,ak dễ lắm nếu bạn chăm chỉ

30 tháng 6 2015

\(\left(\frac{27}{64}\right)^{15}=\frac{\left(3^3\right)^{15}}{\left(2^6\right)^{15}}=\frac{3^{45}}{2^{90}}=\left(\frac{3}{2^2}\right)^{45}\)

\(\left(\frac{81}{256}\right)^{10}=\frac{\left(3^4\right)^{10}}{\left(2^8\right)^{10}}=\frac{3^{40}}{2^{80}}=\left(\frac{3}{2^2}\right)^{40}\)

Do \(\left(\frac{3}{2^2}\right)^{45}<\left(\frac{3}{2^2}\right)^{40}\Rightarrow\left(\frac{27}{64}\right)^{15}<\left(\frac{81}{256}\right)^{10}\)

Ta có: \(\dfrac{4^7\cdot2^8}{3\cdot2^{15}\cdot16^2-5\cdot2^2\cdot\left(2^{10}\right)^2}\)

\(=\dfrac{2^{22}}{3\cdot2^{15}\cdot2^8-5\cdot2^2\cdot2^{20}}\)

\(=\dfrac{2^{22}}{2^{22}\left(3\cdot2-5\right)}\)

\(=1\)