K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)

\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)

Do đó: A=B

21 tháng 5 2022

\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)

\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)

--> Bằng nhau

2 tháng 6 2017

Võ Đông Anh Tuấn

Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)

a)

\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)

Vậy \(7>3\sqrt{5}\)

b)

\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)

Vậy \(8< 2\sqrt{7}+3\)

c)

\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)

Vậy \(3\sqrt{6}< 2\sqrt{15}\)

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

3 tháng 7 2017

a/ giả sử \(\sqrt{7}-\sqrt{2}< 1\)

\(\Leftrightarrow\sqrt{7}< 1+\sqrt{2}\)

\(\Leftrightarrow 7< 1+2\sqrt{2}+2\)

\(\Leftrightarrow4< 2\sqrt{2}\Leftrightarrow16< 8\left(sai\right)\)

vậy \(\sqrt{7}-\sqrt{2}>1\)

câu b, c bạn làm tương tụ nhé , giả sử một đẳng thức tạm, sau đó bình phương lên rồi làm theo như trên là được nha 

3 tháng 7 2017

Bài này cũng dễ

a, \(\sqrt{7}-\sqrt{2}\) lớn hơn \(1\) . Vì

\(\sqrt{7}-\sqrt{2}=1,231537749\)

\(1=1\)

b, \(\sqrt{8}+\sqrt{5}\) bé hơn \(\sqrt{7}+\sqrt{6}\) . Vì

\(\sqrt{8}+\sqrt{5}=5,064495102\) 

\(\sqrt{7}+\sqrt{6}=5,095241054\)

c, \(\sqrt{2005}+\sqrt{2007}\) lớn hơn \(\sqrt{2006}\) . Vì

\(\sqrt{2005}+\sqrt{2007}=89,57677992\)

\(\sqrt{2006}=44,78839135\) 

24 tháng 6 2018

a) Ta có:

\(6\sqrt{5}=\sqrt{5\cdot36}=\sqrt{180}\)

\(5\sqrt{6}=\sqrt{6\cdot25}=\sqrt{200}\)

Mà \(\sqrt{180}< \sqrt{200}\)

Vậy: \(6\sqrt{5}< 5\sqrt{6}\)

x) Ta có: \(\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\)

Công hai vế của BĐT cho 3: 

Suy ra: \(\sqrt{8}+3< 3+3=6\)

Vậy: \(\sqrt{8}+3< 6\)

b) Ta có:

\(\sqrt{2\sqrt{3}}=\sqrt[4]{12}\)

Tương tự: \(\sqrt{3\sqrt{2}}=\sqrt[4]{18}\)

Mà \(\sqrt[4]{18}>\sqrt[4]{12}\)

Vậy.....

d) Ta có: 

\(2\sqrt{5}-5=\sqrt{5}+\sqrt{5}-5=\left(\sqrt{5}-2\right)+\left(\sqrt{5}-3\right)>\sqrt{5}-3\)

Vậy ......

e) Ta có: 

\(\sqrt{2}-2=\frac{3\sqrt{2}-6}{3}\)

\(\sqrt{3}-3=\frac{2\sqrt{3}-6}{2}\)

Mà \(3\sqrt{2}>2\sqrt{3}\)

Vậy .....

f) ........... Đang thinking

24 tháng 10 2019

đang dùng máy tínhmaf

1: \(=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\dfrac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)

3: \(=\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{3}-1}}}\)

\(=\sqrt{6+2\sqrt{2\cdot\sqrt{2-\sqrt{3}}}}\)

\(=\sqrt{6+2\sqrt{\sqrt{2}\left(\sqrt{3}-1\right)}}\)

\(=\sqrt{6+2\sqrt{\sqrt{6}-\sqrt{2}}}\)

18 tháng 7 2015

Xét hiệu :

\(A-B=2\left(\sqrt{1}-\sqrt{2}\right)+2.\left(\sqrt{3}-\sqrt{4}\right)+...+2\left(\sqrt{19}-\sqrt{20}\right)\)

Mà: \(\sqrt{1}<\sqrt{2};\sqrt{3}<\sqrt{4};...;\sqrt{19}<\sqrt{20}\)

nên \(\sqrt{1}-\sqrt{2}<0;\sqrt{3}-\sqrt{4}<0;...;\sqrt{19}-\sqrt{20}<0\)

=> A - B < 0 => A < B

 

11 tháng 10 2018

a, \(\frac{3\sqrt{7}+5\sqrt{2}}{\sqrt{5}}=\frac{3\sqrt{35}+5\sqrt{10}}{5}=\frac{3\sqrt{35}+\sqrt{250}}{5}\)

Ta có: \(3\sqrt{35}< 3\sqrt{36}=3\cdot6=18< 18,5\)

\(\sqrt{250}< \sqrt{256}=16\)

\(\Rightarrow3\sqrt{35}+\sqrt{250}< 18,5+16=34,5\Rightarrow\frac{3\sqrt{35}+5\sqrt{10}}{5}< \frac{34,5}{5}=6,9\)

b,\(\sqrt{13}-\sqrt{12}=\frac{1}{\sqrt{13}+\sqrt{12}};\sqrt{7}-\sqrt{6}=\frac{1}{\sqrt{7}+\sqrt{6}}\)

Vì \(\sqrt{13}+\sqrt{12}>\sqrt{7}+\sqrt{6}\)nên \(\frac{1}{\sqrt{13}+\sqrt{12}}< \frac{1}{\sqrt{7}+\sqrt{6}}\)

\(\Rightarrow\sqrt{13}-\sqrt{12}< \sqrt{7}-\sqrt{6}\)