Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
a) Ta có:
\(6\sqrt{5}=\sqrt{5\cdot36}=\sqrt{180}\)
\(5\sqrt{6}=\sqrt{6\cdot25}=\sqrt{200}\)
Mà \(\sqrt{180}< \sqrt{200}\)
Vậy: \(6\sqrt{5}< 5\sqrt{6}\)
x) Ta có: \(\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\)
Công hai vế của BĐT cho 3:
Suy ra: \(\sqrt{8}+3< 3+3=6\)
Vậy: \(\sqrt{8}+3< 6\)
b) Ta có:
\(\sqrt{2\sqrt{3}}=\sqrt[4]{12}\)
Tương tự: \(\sqrt{3\sqrt{2}}=\sqrt[4]{18}\)
Mà \(\sqrt[4]{18}>\sqrt[4]{12}\)
Vậy.....
d) Ta có:
\(2\sqrt{5}-5=\sqrt{5}+\sqrt{5}-5=\left(\sqrt{5}-2\right)+\left(\sqrt{5}-3\right)>\sqrt{5}-3\)
Vậy ......
e) Ta có:
\(\sqrt{2}-2=\frac{3\sqrt{2}-6}{3}\)
\(\sqrt{3}-3=\frac{2\sqrt{3}-6}{2}\)
Mà \(3\sqrt{2}>2\sqrt{3}\)
Vậy .....
f) ........... Đang thinking
\(1)\) Ta có :
\(\left(\sqrt{3\sqrt{2}}\right)^4=\left[\left(\sqrt{3\sqrt{2}}\right)^2\right]^2=\left(3\sqrt{2}\right)^2=9.2=18\)
\(\left(\sqrt{2\sqrt{3}}\right)^4=\left[\left(\sqrt{2\sqrt{3}}\right)^2\right]^2=\left(2\sqrt{3}\right)^2=4.3=12\)
Vì \(18>12\) nên \(\left(\sqrt{3\sqrt{2}}\right)^4>\left(\sqrt{2\sqrt{3}}\right)^4\)
\(\Rightarrow\)\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Chúc bạn học tốt ~
a)2=1+1
Có:12<\(\sqrt{2}^{^{ }2}\)
=> 1<\(\sqrt{2}\)
=>1+1<\(\sqrt{2}+1\)
=>2<\(\sqrt{2}+1\)
c) 10=2.5
Có;\(5=\)\(\sqrt{25}< \sqrt{31}\)
=>\(\sqrt{31}>\sqrt{25}\)
=>\(2.\sqrt{31}>2.\sqrt{25}\)
=>\(2.\sqrt{31}>10\)
b) 1=2-1
Có: \(2=\sqrt{4}>\sqrt{3}\)
=>\(\sqrt{4}-1>\sqrt{3}-1\)
=>\(1>\sqrt{3}-1\)
d) -12=-3.4
Có:\(4=\sqrt{16}>\sqrt{11}\)
=>\(\sqrt{11}< \sqrt{16}\)
=>\(-3.\sqrt{11}>-3.\sqrt{16}\)
=>\(-3.\sqrt{11}>-12\)
1) \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)
\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)
2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)
\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)
3) \(2=\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\)\(2-1>\sqrt{3}-1\)
hay \(1>\sqrt{3}-1\)
4) \(9-4\sqrt{5}< 16\)
5) \(\sqrt{2}>\sqrt{1}=1\)
\(\Rightarrow\)\(\sqrt{2}+1>2\)
a) \(1=\sqrt{1}< \sqrt{2}\)
b) \(2=\sqrt{4}>\sqrt{3}\)
c) \(6=\sqrt{36}< \sqrt{41}\)
d) \(7=\sqrt{49}>\sqrt{47}\)
e) \(2=1+1=\sqrt{1}+1< \sqrt{2}+1\)
f) \(1=2-1=\sqrt{4}-1>\sqrt{3}-1\)
g) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\)
h) \(\sqrt{3}>0>-\sqrt{12}\)
i) \(5=\sqrt{25}< \sqrt{29}\)
\(\Rightarrow-5>-\sqrt{29}\)
Giỏi quá