\(^2\)+5\(^3\)+...+5
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

a)

\(A=1+5+5^2+5^3+................+5^{99}\)

\(\Rightarrow5A=5+5^2+5^3+................+5^{99}+5^{100}\)

\(\Rightarrow5A-A=\left(5+5^2+5^3+.........+5^{99}+5^{100}\right)-\left(1+5+5^2+.......+5^{99}\right)\)

\(\Rightarrow4A=5^{100}-1\)

\(\Rightarrow A=\dfrac{5^{100}-1}{4}\)

Ta có :

\(A=\dfrac{5^{100}-1}{4}< B=\dfrac{5^{100}}{4}\Rightarrow A< B\)

b) Chưa có nghĩ ra!!

19 tháng 5 2017

a, \(A=1+5+5^2+...+5^{100}\\ =>5A=5+5^2+5^3+...........+5^{101}\\ =>5A-A=\left(5+5^2+5^3+......+5^{101}\right)-\left(1+5+5^2+...5^{100}\right)\\ 4A=5^{101}-1\\ =>A=\dfrac{5^{101}-1}{4}->\left(1\right)\)

Theo đề: \(B=\dfrac{5^{101}}{4}->\left(2\right)\)

Từ (1) và (2), ta thấy: \(\dfrac{5^{101}-1}{4}< \dfrac{5^{101}}{4}\\ =>A< B\)