Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bạn ơi đúng là 2^600 < 3^400 là đúng nhưng cách này dễ hơn
2^600=(2^3)^200 và 3^400=(3^2)^200 cách giải dễ không
\(3^{600};4^{400}\)
\(3^{600}=\left(3^3\right)^{200}\)
\(4^{400}=\left(4^2\right)^{200}\)
Vì : \(27^{200}>16^{200}\)
\(\Rightarrow3^{600}>4^{400}\)
Ta có:
\(3^{600}=3^{3\times200}=\left(3^3\right)^{200}=27^{200}\)
\(4^{400}=4^{2\times200}=\left(4^2\right)^{200}=16^{200}\)
Vì 27 > 16 \(\Rightarrow27^{200}>16^{200}\Leftrightarrow3^{600}>4^{400}\)
Đề bài toán: So sánh 2600 và 3400
Bài giải:
Ta có: 2600 = 26.100 = (26)100 = 64100
3400 = 34.100 = (34)100 = 81100
Vì 64100 < 81100 nên 2600 < 3400
Chúc bạn học tốt.
Ta có : \(2^{600}=\left(2^3\right)^{200}=8^{200}\)
\(3^{400}=\left(3^2\right)^{200}=9^{200}\)
Vì \(8^{200}< 9^{200}\)
Nên \(2^{600}< 3^{400}\)
\(2^{600}=2^{3.200},3^{400}=3^{2.200}\)
Em so sánh 2^3 và 3^2
3400=(32)200=9200
2600=(23)200=8200
Vì 9200>8200
nên 3400>2600
Ta có: \(3^{400}=\left(3^2\right)^{200}=9^{200}\)(1)
\(2^{600}=\left(2^3\right)^{200}=8^{200}\)(2)
Từ (1) và (2) \(\Rightarrow3^{400}>2^{600}\)