Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}=\frac{\left(\sqrt{3}+1\right)^2}{\sqrt[3]{3\sqrt{3}+3.\sqrt{3}^2+3\sqrt{3}+1}}=\frac{\left(\sqrt{3}+1\right)^2}{\sqrt[3]{\left(\sqrt{3}+1\right)^3}}=\frac{\left(\sqrt{3}+1\right)^2}{\sqrt{3}+1}=\sqrt{3}+1\)
b/ Đặt \(x=\sqrt{\sqrt{2}+2\sqrt{\sqrt{2}-1}}+\sqrt{\sqrt{2}-2\sqrt{\sqrt{2}-1}}\) \(\Rightarrow x>0\)
\(x^2=2\sqrt{2}+2\sqrt{2-4\left(\sqrt{2}-1\right)}=2\sqrt{2}+2\sqrt{6-4\sqrt{2}}\)
\(x^2=2\sqrt{2}+2\sqrt{\left(2-\sqrt{2}\right)^2}=2\sqrt{2}+4-2\sqrt{2}=4\)
\(\Rightarrow x=2>1,9\)
Ta có:\(\sqrt{3}-1=-1+\sqrt{3}< -1+\sqrt{4}=-1+2=1\)
\(\Rightarrow\sqrt{3}-1< 1\)
\(3+\sqrt{5}\approx5,23\)
\(2\sqrt{2}+\sqrt{6}\approx5,27\)
Vì 5,23 < 5,27 nên \(3+\sqrt{5}< 2\sqrt{2}+\sqrt{6}\)
\(\left(\frac{1}{2}\right)^{30}=\left(\frac{1}{2}^3\right)^{10}\)
\(\Rightarrow\left(\frac{1}{2}^3\right)^{10}=\frac{1}{6}^{10}\)
\(\frac{1}{3}^{20}=\left(\frac{1}{3}^2\right)^{10}=\frac{1}{9}^{10}\)
\(\frac{1}{6}^{10}>\frac{1}{9}^{10}\Rightarrow\left(\frac{1}{2}\right)^{30}>\left(\frac{1}{3}\right)^{20}\)
(1/2)^30=(1/2^3)^10=(1/8)^10
(1/3)^20=(1/2^2)^10=(1/4)^10
Vì 1/8 <1/4 nên (1/8)^10<(1/4)^10
=>(1,2)^30<(1/3)^20
click cho mk nha