\(\frac{15^{16}+1}{15^{17}+1}\) và\(\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2016

Mình ko nhầm là phân số thứ 2 nhân với 15

19 tháng 2 2016

kết quả la2phan6 số đó bằng nhau không tin bạn thử nhân chéo đi

28 tháng 2 2018

Ta có công thức : 

\(\frac{a}{b}< 1\) \(\Rightarrow\) \(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Rightarrow\)\(B=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=A\)

Vậy \(A>B\)

7 tháng 5 2020

tại sao a/b<1 thì a/b<a+c/b+C

9 tháng 7 2020

a) \(A=\frac{15^{16}+1}{15^{17}+1}\)\(B=\frac{15^{15}+1}{15^{16}+1}\)

ta có \(A=\frac{15^{16}}{15^{17}}\)\(B=\frac{15^{15}}{15^{16}}\)

ta dễ nhận thấy phần cơ số của hai phân số A và B = nhau

mà phần mũ của các lũy thừa phân số A đều lớn hơn phân số B 

\(\Rightarrow\frac{15^{16}}{15^{17}}>\frac{15^{15}}{15^{16}}\)

\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}>\frac{15^{15}+1}{15^{16}+1}\)

\(\Rightarrow A>B\)

\(A=\frac{15^{16}+1}{15^{17}+1}vaB=\frac{15^{15}+1}{15^{16}+1}\)

+)Ta thấy\(A=\frac{15^{16}+1}{15^{17}+1}< 1\)

\(\Rightarrow A< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{15}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=B\)

Vậy A<B

b)Đề sai

Chúc bạn học tốt

28 tháng 2 2016

Ta có: 1516+1/1517+1 < 1

      1516+1+14 / 1517+1+14

       15. (1+1515) / 15. (1+1516)

Triệt tiêu 15 còn 1+1515/ 1+1516

 Vậy A< B

Ap dụng công thức: a/b < 1 Suy ra a/b < a+m/b+m

23 tháng 4 2018

\(A=\frac{15^{16}+1}{15^{17}+1}\)                    và                          \(B=\frac{15^{15}+1}{15^{16}+1}\)

\(A< 1\Rightarrow A>\frac{15^{16}+1+14}{15^{17}+1+4}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=B\)

\(\Rightarrow A< B\)

23 tháng 4 2018

\(A=\frac{15^{16}+1}{15^{17}+1}=\frac{1}{225}\)

\(B=\frac{15^{15}+1}{15^{16}+1}=\frac{1}{225}\)

\(\Rightarrow A=B\)

18 tháng 12 2017

giúp mình với mai phải nộp rồi

Bài 1:

Ta có:

\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)

\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)

Lại có:

\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)

\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)

Bài 2:

Ta có:

\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)

\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)

\(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)

\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)

\(\Rightarrow13A>13B\Rightarrow A>B\)

8 tháng 5 2016

\(\frac{10^{15}+1}{10^{16}+1}=\frac{10^{16}+10}{10^{17}+10}\)

Vì B<1 suy ra B<\(\frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=A\)

Vậy B<A

8 tháng 5 2016

Ta có: \(10A=\frac{10^{16}+10}{10^{16}+1}=1+\frac{9}{10^{16}+1}\) ; \(10B=\frac{10^{17}+10}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)

Mà \(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\) nên \(10A>10B\) => \(A>B\)

22 tháng 2 2020

Đặt \(A=\frac{2^{15}+1}{2^{16}+1}\)

\(\Rightarrow2A=\frac{2^{16}+2}{2^{16}+1}=\frac{2^{16}+1+1}{2^{16}+1}=1+\frac{1}{2^{16}+1}\)

Đặt \(B=\frac{2^{14}+1}{2^{15}+1}\)

\(\Rightarrow2B=\frac{2^{15}+2}{2^{15}+1}=\frac{2^{15}+1+1}{2^{15}+1}=1+\frac{1}{2^{15}+1}\)

Vì 216+1>215+1

\(\Rightarrow\frac{1}{2^{16}+1}< \frac{1}{2^{15}+1}\)

\(\Rightarrow1+\frac{1}{2^{16}+1}< 1+\frac{1}{2^{15}+1}\)

\(\Rightarrow2A< 2B\Rightarrow A< B\)

Vậy...

22 tháng 2 2020

\(A=\frac{2^{15}+1}{2^{16}+1}\)

\(\Leftrightarrow\)\(2A=1+\frac{1}{2^{16}+1}\)

\(B=\frac{2^{14}+1}{2^{15}+1}\)

\(\Leftrightarrow2B=1+\frac{1}{2^{15}+1}\)

Nhận thấy : \(1+\frac{1}{2^{16}+1}< 1+\frac{1}{2^{15}+1}\Leftrightarrow2A< 2B\Leftrightarrow A< B\)

17 tháng 8 2017

Ta có:

\(A=\frac{10^{15}+1}{10^{16}+1}\)

\(10A=\frac{10^{16}+10}{10^{16}+1}\)

\(B=\frac{10^{16}+1}{10^{17}+1}\)

\(10B=\frac{10^{17}+10}{10^{17}+1}\)

Ta so sánh \(10A\) và \(10B\)

Có: 

\(10A:\) Mẫu - tử = 9

\(10B:\) Mẫu - tử = 9

Lại có:

 \(\frac{10^{16}+10}{10^{16}+1}\) \(-1\)\(=\frac{9}{10^{16}+1}\)

\(\frac{10^{17}+10}{10^{17}+1}-1=\frac{9}{10^{17}+1}\)

Vì \(\frac{9}{10^{16}+1}\)\(>\frac{9}{10^{17}+1}\)nên \(10A>10B\)

\(\Rightarrow\)\(A>B\)

Vậy \(A>B\)

17 tháng 8 2017

Theo bải ra ta có:

A=\(\frac{10^{15}+1}{10^{16}+1}\)=> 10A =.\(\frac{10.\left(10^{15}+1\right)}{10^{16}+1}\)\(\frac{10.10^{15}+1.10}{10^{16}+1}\)

                                      = \(\frac{10.10^{15}+10}{10^{16}+1}\)=\(\frac{10^{16}+1+9}{10^{16}+1}\)\(1+\frac{9}{10^{16}+1}\)

B= \(\frac{10^{16}+1}{10^{17}+1}\)=> 10B = \(\frac{10.\left(10^{16}+1\right)}{10^{17}+1}\)=\(\frac{10.10^{16}+1.10}{10^{17}+1}\)

                                       = \(\frac{10.10^{16}+10}{10^{17}+1}\)\(\frac{10^{17}+1+9}{10^{17}+1}\)\(1+\frac{9}{10^{17}+1}\)

Vì 1=1 mà \(\frac{9}{10^{16}+1}\)>   \(\frac{9}{10^{17}+1}\)nên => 10A > 10B => A>B

Vậy A>B.