K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

Ta có : 

\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)

\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)

\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)

\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)

\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\) 

\(\Rightarrow\)\(S>10\) 

Vậy \(S>10\)

Chúc bạn học tốt ~ 

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

\(\begin{array}{l}a)\left[ {{{\left( {\dfrac{3}{7}} \right)}^4}.{{\left( {\dfrac{3}{7}} \right)}^5}} \right]:{\left( {\dfrac{3}{7}} \right)^7}\\ = {\left( {\dfrac{3}{7}} \right)^{4 + 5}}:{\left( {\dfrac{3}{7}} \right)^7}\\ = {\left( {\dfrac{3}{7}} \right)^9}:{\left( {\dfrac{3}{7}} \right)^7}\\ = {\left( {\dfrac{3}{7}} \right)^{9-7}}\\= {\left( {\dfrac{3}{7}} \right)^2}\\b)\left[ {{{\left( {\dfrac{7}{8}} \right)}^5}:{{\left( {\dfrac{7}{8}} \right)}^4}} \right].\left( {\dfrac{7}{8}} \right)\\ = {\left( {\dfrac{7}{8}} \right)^{5 - 4}}.\left( {\dfrac{7}{8}} \right)\\ = \left( {\dfrac{7}{8}} \right).\left( {\dfrac{7}{8}} \right)\\ = {\left( {\dfrac{7}{8}} \right)^2}\\c)\left[ {{{\left( {0,6} \right)}^3}.{{\left( {0,6} \right)}^8}} \right]:\left[ {{{\left( {0,6} \right)}^7}.{{\left( {0,6} \right)}^2}} \right]\\ = {\left( {0,6} \right)^{3 + 8}}:{\left( {0,6} \right)^{7 + 2}}\\ = {\left( {0,6} \right)^{11}}:{\left( {0,6} \right)^9}\\ = {\left( {0,6} \right)^{11-9}}\\={\left( {0,6} \right)^2}.\end{array}\)

20 tháng 12 2019

a) Ta có: \(25^{15}=\left(5^2\right)^{15}=5^{30}\)

               \(8^{10}.3^{30}=\left(2^3\right)^{10}.3^{30}\)\(=2^{30}.3^{30}=6^{30}\)

Vì \(5^{30}< 6^{30}\)nên \(25^{15}< 8^{10}.3^{30}\)

b) Ta có: \(\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\)

\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}.\left(2^2\right)^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{3^{30}}{7^{30}}\)

Vì \(2^{30}< 3^{30}\)nên \(\frac{2^{30}}{7^{30}}< \frac{3^{30}}{7^{30}}\)hay \(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)

_Học tốt_

              

28 tháng 12 2016

Ta có : \(\frac{4^{15}}{7^{10}}=\frac{\left(2^2\right)^{15}}{7^{10}}=\frac{2^{30}}{7^{10}}\)

\(\frac{8^{10}.3^{30}}{7^{30}.1^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}}=\frac{2^{30}.3^{30}}{7^{30}}=\frac{\left(2.3\right)^{30}}{7^{30}}=\frac{6^{30}}{7^{30}}\)

Mà : \(\frac{2^{30}}{7^{10}}=\frac{\left(2^3\right)^{10}}{7^{10}}=\frac{8^{10}}{7^{10}}\)

\(\frac{6^{30}}{7^{30}}=\frac{\left(6^3\right)^{10}}{\left(7^3\right)^{10}}=\frac{216^{10}}{343^{10}}\)

Vì : \(\frac{8}{7}>\frac{216}{343}\Rightarrow\frac{8^{10}}{7^{10}}>\frac{216^{10}}{343^{10}}\)

\(\Rightarrow\frac{4^{15}}{7^{10}}>\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)

28 tháng 12 2016

giúp mình vs 

cho n là số tự nhiên

a,   (n+ 10) (n+ 15) chia hết cho 2

b,    n (n+ 1) (n+2) chia hết cho 2 và 3

c,     n (n+ 1) (2n+1) chia hết cho 2 và 3

28 tháng 12 2017

a) 2515 và 810. 330

2515 = (52 ) 15 = 530

810. 330 = (23 )10. 330 = 230. 330 = 630

Vì 530< 630

nên 2515< 810. 330

b) \(\frac{4^{15}}{7^{30}}\)và \(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)

\(\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\)

\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}.\left(2^2\right)^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{3^{30}}{7^{30}}\)

Vì \(\frac{2^{30}}{7^{30}}< \frac{3^{30}}{7^{30}}\)

nên \(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)

28 tháng 12 2017

a)\(25^{15}=5^{2^{15}}=5^{30}\)

\(8^{10}.3^{30}=2^{3^{10}}.3^{30}=\left(2.3\right)^{30}=6^{30}\)

\(5^{30}< 6^{30}=>25^{15}< 8^{10}.3^{30}\)

b)\(\frac{4^{15}}{7^{30}}=\frac{2^{2^{15}}}{7^{30}}=\frac{2^{30}}{7^{30}}=\left(\frac{2}{7}\right)^{30}\)

\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{6^{30}}{14^{30}}=\left(\frac{6}{14}\right)^{30}=\left(\frac{3}{7}\right)^{30}\)

Vì hai số có mũ bằng 30 nên ta so sánh :\(\frac{2}{7}< \frac{3}{7}\)

=>\(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\).