K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

\(\frac{2009}{2010}=1-\frac{1}{2010}\)

\(\frac{2010}{2011}=1-\frac{1}{2011}\)

\(\frac{1}{2010}\) lớn hơn \(\frac{1}{2011}\)mà trừ càng nhiều thì càng nhỏ.

Vậy \(\frac{2009}{2010}<\frac{2010}{2011}\)

10 tháng 6 2020

\(B=\frac{2008+2009+2010}{2009+2010+2011}\)

\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)

10 tháng 6 2020

\(B=\frac{2008+2009+2010}{2009+2010+2011}\)

\(=\frac{2008}{2009+2010+2011}=\frac{2009}{2009+2010+2011}=\frac{2010}{2009+2010+2011}\)

\(< A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}\)

16 tháng 1 2019

A=2.998508205

B=0.999502735

suy ra A>B

30 tháng 5 2019

                                              Bài giải

Theo bài ra :  

\(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)

\(B=\frac{2009+2010+2011}{2010+2011+2012}=\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)

Ta có : 

\(\frac{2009}{2010}>\frac{2009}{2010+2011+2012}\)

\(\frac{2010}{2011}>\frac{2010}{2010+2011+2012}\)

\(\frac{2011}{2012}>\frac{2011}{2010+2011+2012}\)

\(\Rightarrow\text{ }\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}>\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)

\(\Rightarrow\text{ }A>B\)

20 tháng 4 2016

Dễ thấy:

\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)

\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)

\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)

=>\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

Hay \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)

Vậy A > B

9 tháng 6 2020

Ta có: \(\frac{2009}{2010}>\frac{2009}{2010+2011}\)  ; \(\frac{2010}{2011}>\frac{2010}{2011+2010}\)

\(\Rightarrow\frac{2009}{2010}+\frac{2010}{2011}>\frac{2009}{2010+2011}+\frac{2010}{2011+2010}=\frac{2009+2010}{2010+2011}\)

=> A > B

9 tháng 6 2020

Ta có  \(\frac{2009}{2010}>\frac{2009}{2010+2011}\)           ,   \(\frac{2010}{2011}>\frac{2010}{2011+2010}\)

\(\Rightarrow\frac{2009}{2010}+\frac{2010}{2011}>\frac{2009}{2010+2011}+\frac{2010}{2011+2010}=\frac{2009+2010}{2010+2011}\)

\(\Rightarrow A>B\)

20 tháng 2 2018

giúp mình với

DD
21 tháng 6 2021

\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}=1-\frac{1}{2009}+1-\frac{1}{2010}+1-\frac{1}{2011}+1+\frac{3}{2008}\)

\(=4+\left(\frac{1}{2008}-\frac{1}{2009}\right)+\left(\frac{1}{2008}-\frac{1}{2010}\right)+\left(\frac{1}{2008}-\frac{1}{2011}\right)>4\)

21 tháng 6 2021

4 bé hơn