K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

A<B kết bạn với mình đi !

17 tháng 2 2017

Mk sẽ kết bạn với bạn nhưng bạn làm ghi chi tiết cách giải giùm được ko

27 tháng 3 2017

Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B

Ta có:

2014A=20142014+ 2014/20142014+1=1+2013/20142014+1

2014B=20142013+2014/20142013+1=1+2013/20142013+1

vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B

suy ra A<B

1 tháng 4 2017

Từ đề bài ta sẽ có: \(\frac{a}{2011}+\frac{b}{2012}+\frac{c}{2013}=\frac{a+b+c}{6036}.\)

Suy ra a + b + c = 6036 : 3 = 2012

Ta có: \(\frac{a}{2011}+\frac{b}{2012}+\frac{c}{2013}=\frac{2012}{6036}.\)

  tới đây thì mình bí rồi! Bạn tự giải nhé! Ai thấy đúng nhớ tk cho mình

5 tháng 4 2017

như thế vậy thì tớ cg nghĩ ra rồi, dù sao thì cg cảm ơn bạn đã trả lời câu hỏi của mk

14 tháng 4 2019

Nhờ Mọi Người cho mk ít dạng bài tập kiểu đó và bài giải giùm vs ạ !! Thanks nhiều ^^

14 tháng 4 2019

Thứ tư mình cũng thi nè

13 tháng 3 2017

ta thấy:

\(\frac{2012}{2013}+\frac{2013}{2014}>\frac{2012}{2014}+\frac{2013}{2014}=\frac{2012+2013}{2014}>\frac{2012+2013}{2013+2014}\)

13 tháng 3 2017

So sánh phần bù đó bạn 

23 tháng 2 2015

các cậu trình bày ra 

23 tháng 2 2015

Tớ thề là \(A>B!!!!!!!!!!!!!!!!!!!!!!!!!!!\)

16 tháng 3 2018

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{10^{2014}+1}{10^{2015}+1}< \frac{10^{2014}+1+9}{10^{2015}+1+9}=\frac{10^{2014}+10}{10^{2015}+10}=\frac{10\left(10^{2013}+1\right)}{10\left(10^{2014}+1\right)}=\frac{10^{2013}+1}{10^{2014}+1}=A\)

\(\Rightarrow\)\(B< A\) hay \(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~ 

16 tháng 3 2018

áp dụng tính chất

nếu a/b>1thì a/b<(a+n)/(b+n)

=)))))))))))))))))

1 tháng 7 2016

Sai rồi nhé bạn 

1 tháng 7 2016

trà my Thế bạn làm thế nào

23 tháng 5 2018

TA có :

A = \(\frac{10^{2012}-2}{10^{2013}-1}\)=> 10A = \(1-\frac{19}{10^{2013}-1}\)

B = \(\frac{10^{2013}-2}{10^{2014}-1}\)=> 10B = 1 - \(\frac{19}{10^{2014}-1}\)

Vì \(1-\frac{19}{10^{2013}-1}\)< 1 - \(\frac{19}{10^{2014}-1}\)hay 10A < 10B => A < B

Vậy A < B