Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{18}{91}\)và \(\frac{23}{114}\)Phân số trung gian: \(\frac{18}{114}\)
Mà \(\frac{18}{91}>\frac{18}{114}< \frac{23}{114}\)( vô lý )
Vậy không thể tính bằng số trung gian được
Ta có: 18/91 < 18/90 = 1/5 = 23/115 < 23/114.
Vậy 18/91 < 23/114.
Ta thấy \(10^{50}>10^{50}-3\)
\(\Rightarrow B=\frac{10^{50}}{10^{50}-3}>\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)
Vậy \(A< B\)
\(\frac{23}{144}\)mà
Ta có:
\(\frac{18}{91}>\frac{18}{108}\Rightarrow\frac{18}{91}>\frac{1}{6}\)
\(\frac{23}{144}< \frac{23}{138}\Rightarrow\frac{23}{144}< \frac{1}{6}\)
Vì \(\frac{18}{91}>\frac{1}{6};\frac{23}{144}< \frac{1}{6}\)nên \(\frac{18}{91}>\frac{23}{144}\)
mình nhầm câu b:
Áp dụng....
A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)
=10^10+1/10^11+1=B
Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)
a) Với a<b=>a+n/b+n >a/b
Với a>b=>a+n/b+n<a/b
Với a=b=>a+n/b+n=a/b
b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:
A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]
=(10^10)+1/(10^11)+1=B
Vậy A=B
A=20 mủ 10 - 1 +12/(20 mủ 10 -1)=1+12/20 MỦ 10 -1
B=20 mủ 10 - 3 + 2 /(20 mủ 10 - 3)=1+2/20 mủ 10 - 3
Vì ... bạn tự làm nha.nhớ k đấy
A=\(\frac{20^{10}+1}{20^{10}-1}\)=\(\frac{\left(20^{10}-1\right)+2}{20^{10}-1}\)=\(\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}\)=\(1+\frac{2}{20^{10}-1}\)
B= \(\frac{20^{10}-1}{20^{10}-3}=\frac{\left(20^{10}-3\right)+2}{20^{10}-3}\)=\(\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì 2010-1 > 2010-3
=>\(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\)
=> \(1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)
=> A < B
Vậy A < B
Câu hỏi của Lê Tiến Cường - Toán lớp 6 - Học toán với OnlineMath
\(A=\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{10101}{10100}=\frac{2+1}{2}+\frac{6+1}{6}+\frac{12+1}{12}+...+\frac{10100+1}{10100}\)
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{10100}\right)\)
\(A=\left(1+\frac{1}{1\times2}\right)+\left(1+\frac{1}{2\times3}\right)+\left(1+\frac{1}{3\times4}\right)+...+\left(1+\frac{1}{100\times101}\right)\)
\(A=\left(1+1+1+....+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{100\times101}\right)\)
\(A=100+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=100+1-\frac{1}{101}=101-\frac{1}{101}< 101=B\)
\(\Rightarrow A< B\)
So easy
\(H=\frac{4116-14}{10290-35}=\frac{14.294-14}{35.294-35}=\frac{14.\left(294-1\right)}{35.\left(294-1\right)}=\frac{14.293}{35.293}=\frac{2}{5}\)
\(K=\frac{29.101-101}{2.19.101+4.101}=\frac{101.\left(29-1\right)}{101.\left(38+4\right)}=\frac{28}{42}=\frac{2}{3}\)
\(I=\frac{1313-1717}{303}=\frac{13.101-17.101}{3.101}=\frac{101.\left(13-17\right)}{3.101}=\frac{-4}{3}\)
\(M=\frac{12-24.3}{1-35}=\frac{12-12.2.3}{-34}=\frac{12.\left(1-6\right)}{-34}=\frac{-60}{-34}=\frac{30}{17}\)
\(H\)\(=\) \(\frac{4116-14}{10290-35}\)
\(=\) \(\frac{4102}{10255}\)
\(=\) \(\frac{4102:2051}{10255:2051}\)
\(=\) \(\frac{2}{5}\)
\(K=\frac{2929-101}{2.1919+404}\)
\(=\) \(\frac{2828}{4242}\)
\(=\) \(\frac{2828:1414}{4242:1414}\)
\(=\) \(\frac{2}{3}\)
\(M=\frac{12-24.3}{1-35}\)
\(=\) \(\frac{-60}{-34}\)
\(=\) \(\frac{60}{34}\)
\(=\) \(\frac{30}{17}\)
:D
Ta có:
\(\frac{12}{35}>\frac{12}{36}\Rightarrow\frac{12}{35}>\frac{1}{3}\)
\(\frac{20}{61}< \frac{20}{60}\Rightarrow\frac{20}{61}< \frac{1}{3}\)
Vì \(\frac{12}{35}>\frac{1}{3};\frac{20}{61}< \frac{1}{3}\)nên \(\frac{12}{35}>\frac{20}{61}\)
So sánh hai phân số \(\frac{18}{91}\) và \(\frac{23}{144}\) theo cách tính bằng số trung gian
mình đang cần gấp ai giải nhanh , chính sát nhất mình k cho
còn 1 câu nữa giải luôn đi