Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:
\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=8^{2187}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Ta thấy \(8^{2187}>3^{512}\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)
\(2^{3^{2^3}}=2^{3^8}=2^{6561}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Tới đây mk chịu để mk suy nghĩ đã!

2^6=64
8^2=64. Vậy 2^6=8^2
5^3=125, 3^5=243. Vì 243>125 nên 5^3<3^5

\(2^{27}=2^{3\cdot9}=\left(2^3\right)^9=8^9\)
\(3^{18}=3^{2\cdot9}=\left(3^2\right)^9=9^9\)
Vậy,......

Ta có: \(\left(x-3\right)^3-3=3^0+3^1+2^5\cdot5\)
=>\(\left(x-3\right)^3-3=1+3+32\cdot5=160+4=164\)
=>\(\left(x-3\right)^3=167\)
=>\(x-3=\sqrt[3]{167}\)
=>\(x=3+\sqrt[3]{167}\)

k cho mình đi rồi mình giải cho
Ta có:
\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=\left(2^3\right)^{2187}=8^{2187}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Vì: 8 > 3 và 2187 > 512
\(\Rightarrow8^{2187}>3^{512}\)
\(\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)
Vậy: \(2^{3^{2^3}}>3^{2^{3^2}}\)