Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=\left(2^3\right)^{2187}=8^{2187}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Vì: 8 > 3 và 2187 > 512
\(\Rightarrow8^{2187}>3^{512}\)
\(\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)
Vậy: \(2^{3^{2^3}}>3^{2^{3^2}}\)
D = \(\frac{2^{2004}+1}{2^{2003}+1}\)=\(\frac{2^{2003}+2}{2^{2004}+2}\)
C = \(\frac{2^{2005}+3}{2^{2006}+3}\)= \(\frac{2^{2005}+2}{2^{2006}+2}\)
Vậy C>D
mình chuyển 1 hạng tử của 3 từ bên d sang c nên ta được pt như trên
Đặt tử A là T ta có:
5T=5(1+5+52+...+59)
5T=5+52+...+510
5T-T=(5+52+...+510)-(1+5+52+...+59)
T=(510-1)/4
Mẫu A là H tính tương tự đc:(59-1)/4.Thay vào ta có:\(A=\frac{\frac{5^{10}-1}{4}}{\frac{5^9-1}{4}}=\frac{5^{10}-1}{5^9-1}\)
B tính tương tự A được \(\frac{3^{10}-1}{3^9-1}\) tới đây sao nx
Câu hỏi của Lê Tiến Cường - Toán lớp 6 - Học toán với OnlineMath
\(A=\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{10101}{10100}=\frac{2+1}{2}+\frac{6+1}{6}+\frac{12+1}{12}+...+\frac{10100+1}{10100}\)
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{10100}\right)\)
\(A=\left(1+\frac{1}{1\times2}\right)+\left(1+\frac{1}{2\times3}\right)+\left(1+\frac{1}{3\times4}\right)+...+\left(1+\frac{1}{100\times101}\right)\)
\(A=\left(1+1+1+....+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{100\times101}\right)\)
\(A=100+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=100+1-\frac{1}{101}=101-\frac{1}{101}< 101=B\)
\(\Rightarrow A< B\)
So easy
Ta có:
\(2^{80}< 2^{81}\)
Lại có:
\(2^{80}=\left(2^{10}\right)^8=1024^8\)
\(3^{24}=\left(3^3\right)^8=27^8\)
Ta thấy:
\(1024^8< 27^8\Rightarrow2^{80}< 3^{24}\)
Mà: \(2^{80}< 2^{81}\Rightarrow2^{81}>3^{24}\)
Vậy: \(2^{81}>3^{24}\)
Ta thấy \(10^{50}>10^{50}-3\)
\(\Rightarrow B=\frac{10^{50}}{10^{50}-3}>\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)
Vậy \(A< B\)
Làm không biết đúng không nha :D
\(2^{3^{2^3}}=\left(\left(2^3\right)^2\right)^3=\left(8^2\right)^3=8^6\)
\(3^{2^{3^2}}=\left(\left(3^2\right)^3\right)^2=\left(9^3\right)^2=9^6\)
\(\Rightarrow\)