K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cách 1 :

Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)

          \(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)

Cộng theo từng vế ( 1) và ( 2 ) ta được :

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)

VẬY \(A>B\)

CÁCH 2

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)

   \(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)

VẬY A>B  

Chúc bạn học tốt ( -_- )

11 tháng 3 2018

nho hon 1

19 tháng 12 2023

Em con quá non

21 tháng 2 2017

Mình mới lớp 5 nên không biết làm bài này.

Xin lỗi nha! Chúc bạn may mắn......mình chính là Đào Minh Tiến!

28 tháng 4 2017

a) \(\frac{n}{n+1}\)và \(\frac{n+2}{n+3}\)

\(\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\cdot\left(n+3\right)}\)

\(\frac{n+2}{n+3}=\frac{\left(n+2\right)\cdot\left(n+1\right)}{\left(n+3\right)\cdot\left(n+1\right)}\)

So sánh : \(n\cdot\left(n+3\right)\)và \(\left(n+2\right)\cdot\left(n+3\right)\)

\(n\cdot\left(n+3\right)=n^2+3n\)

\(\left(n+2\right)\cdot\left(n+3\right)=n^2+5n+6\)

\(n^2+3n< n^2+5n+6\)

\(\Leftrightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)

21 tháng 3 2017

= nhau nha ko tin thì hỏi cô giáo nha

21 tháng 3 2017

n/2n + 3 < n + 2 / 2n + 1 

AH
Akai Haruma
Giáo viên
2 tháng 8 2021

Lời giải:
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}=\frac{n(n+2)+(n+1)^2}{(n+1)(n+2)}=\frac{2n^2+4n+2}{n^2+3n+2}>1\) do $2n^2+4n+2> n^2+3n+2$ với mọi $n\in\mathbb{N}^*$

$B=\frac{2n+1}{2n+3}< 1$ do $2n+1< 2n+3$

Do đó $A>B$

23 tháng 6 2020

Ta có : \(A=\frac{n}{n+1}+\frac{n+1}{n+2}\)

\(B=\frac{n}{2n+3}+\frac{n+1}{2n+3}\)

Do \(2n+3>n+1;n+2\)(n khác 0)

\(n=n;n+1=n+1\)

Vì mẫu lớn hơn và tử bằng nhau suy ra 

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{2n+3}+\frac{n+1}{2n+3}=B\)

\(< =>A>B\)