Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
\(A=\frac{11}{12+13}+\frac{12}{13+14}+\frac{1}{14+15}\)
Hay
\(A=\frac{11}{12+13}+\frac{12}{13+14}+\frac{13}{14+15}\)
mong xem lại hộ cái
Ta có: 12/13 = 1 - 1/13
13/14 = 1 - 1/14
Vì 1/13 > 1/14 nên 12/13 < 13/14
Ta có
A= 1,066018877
=> A > 2/3
tớ tính máy tính ra A = 1,066018877
Đặt \(A=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
\(A>\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}=\frac{3}{14}.5=\frac{15}{14}>1\)
\(A< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{3}{10}.5=\frac{15}{10}=\frac{3}{2}< 2\)
Vậy \(1< A< 2\)
- Ta có:\(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)
=>\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)
mà \(\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)
=>\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>1\)(1)
- Ta có:\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)
mà \(\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}< \frac{20}{10}=2\)
=>\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< 2\)(2)
Từ (1) và (2) => \(1< \frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< 2\)
quy đồng mẫu số ta có :
\(\frac{12}{13}=\frac{12\cdot14}{13\cdot14}=\frac{168}{182}\) ; \(\frac{11}{14}=\frac{11\cdot13}{14\cdot13}=\frac{143}{182}\)
vì 168>143 nên \(\frac{168}{182}>\frac{143}{182}\)
suy ra \(\frac{12}{13}>\frac{11}{14}\)
tịk cho mk nhé
\(A=\frac{11}{12}+13+\frac{12}{13}+14+\frac{13}{14}+12\)
\(A=1-\frac{1}{12}+13+1-\frac{1}{13}+14+1-\frac{1}{14}+12\)
\(A=3-\frac{1}{12}+13+\frac{1}{13}+14+\frac{1}{14}+12\)
\(A=\frac{1}{12}+12+\frac{1}{13}+12+\frac{1}{14}+12\)
\(A=\frac{143+182+164}{572}+36\)
\(A=36\frac{489}{572}\)