Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{21}{52}=\frac{210}{520}=1-\frac{310}{520}\)
\(\frac{213}{523}=1-\frac{310}{523}\)
Vì \(520< 523\)\(\Rightarrow\frac{1}{520}>\frac{1}{523}\)\(\Rightarrow\frac{310}{520}>\frac{310}{523}\)
\(\Rightarrow1-\frac{310}{520}< 1-\frac{310}{523}\)
hay \(\frac{21}{52}< \frac{213}{523}\)
b) \(\frac{1515}{9797}=\frac{15.101}{97.101}=\frac{15}{97}\); \(\frac{171171}{991991}=\frac{171.1001}{991.1001}=\frac{171}{991}\)
Ta có: \(\frac{15}{97}=\frac{150}{970}=1-\frac{820}{970}\); \(\frac{171}{991}=1-\frac{820}{991}\)
Vì \(970< 991\)\(\Rightarrow\frac{1}{970}>\frac{1}{991}\)\(\Rightarrow\frac{820}{970}>\frac{820}{991}\)
\(\Rightarrow1-\frac{820}{970}< 1-\frac{920}{991}\)
hay \(\frac{1515}{9797}< \frac{171171}{991991}\)
c) \(\frac{n+2}{n+3}=1-\frac{1}{n+3}\); \(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
Vì \(n\inℕ^∗\)\(\Rightarrow n+3< n+4\)\(\Rightarrow\frac{1}{n+3}>\frac{1}{n+4}\)
\(\Rightarrow1-\frac{1}{n+3}< 1-\frac{1}{n+4}\)
hay \(\frac{n+2}{n+3}< \frac{n+3}{n+4}\)
d) \(\frac{n+7}{n+6}=1+\frac{1}{n+6}\); \(\frac{n+1}{n}=1+\frac{1}{n}\)
Vì \(n\inℕ^∗\)\(\Rightarrow n+6>n\)\(\Rightarrow\frac{1}{n+6}< \frac{1}{n}\)
\(\Rightarrow1+\frac{1}{n+6}< 1+\frac{1}{n}\)
hay \(\frac{n+7}{n+6}< \frac{n+1}{n}\)
bài 1 :
\(\frac{2}{3}\)+\(\frac{1}{3}\)=\(\frac{3}{3}\)=1
\(\frac{3}{4}\)+\(\frac{2}{4}\)+\(\frac{1}{4}\)=\(\frac{4}{4}\)=1
\(\frac{4}{5}\)+\(\frac{3}{5}\)+\(\frac{2}{5}\)+\(\frac{1}{5}\)=\(\frac{10}{5}\)= 2
chúc bạn học tốt !!!
Ta có : \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1000.1001}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{1001-1000}{1000.1001}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1000}-\frac{1}{1001}\)
\(=1-\frac{1}{1001}=\frac{1000}{1001}\)
Ta thấy : \(1001< 2020\Rightarrow\frac{1}{1001}>\frac{1}{2020}\)
\(\Rightarrow-\frac{1}{1001}< -\frac{1}{2020}\)
\(\Rightarrow1-\frac{1}{1001}< 1-\frac{1}{2020}\Rightarrow\frac{1000}{1001}< \frac{2019}{2020}\)
Hay : \(N< M\)
Ta có :
\(N=\frac{2018+2019+2020}{2019+2020+2021}\)
\(=\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)
Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Leftrightarrow M>N\)
Trả lời:
Ta có:
\(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Rightarrow\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2021}>\frac{2018+2019+2020}{2019+2020+2021}\)
hay \(M>N\)
Vậy \(M>N\)
Ta có: \(\frac{n}{n+1}=1-(\frac{1}{n+1})\)
\(\frac{n+2}{n+3}=1-(\frac{1}{n+3})\)
\(\Rightarrow\)\(\frac{n}{n+1}< \frac{n+2}{n+3}\)
sai đề n-2 thì phải