Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{b-16}{4-\sqrt{b}}\left(b\ge0,b\ne16\right)\)
\(=\frac{\left(\sqrt{b}-4\right)\left(\sqrt{b}+4\right)}{4-\sqrt{b}}\)
\(=-\sqrt{b}-4\)
b) \(\frac{a-4\sqrt{a}+4}{a-4}\left(a\ge0;a\ne4\right)\)
\(=\frac{a-2.\sqrt{a}.2+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-2}{\sqrt{a}+2}\)
c) \(2x+\sqrt{1+4x^2-4x}\) với \(x\le\frac{1}{2}\)
\(=2x+\sqrt{\left(1-2x\right)^2}\)
\(=2x+\left|1-2x\right|=2x+1-2x=1\)
d) \(\frac{4a-4b}{\sqrt{a}-\sqrt{b}}\left(a,b\ge0;a\ne b\right)\)
\(=\frac{4\left(a-b\right)}{\sqrt{a}-\sqrt{b}}=\frac{4\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)
\(=4\left(\sqrt{a}+\sqrt{b}\right)\)
Ta có: \(B=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)
do đó \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}.\frac{\sqrt{x}-6}{\sqrt{x}-1}=\frac{\sqrt{x}-6}{\sqrt{x}+1}=1-\frac{7}{\sqrt{x}+1}\)
Vì \(x\ge0\Rightarrow0< \frac{7}{\sqrt{x}+1}\le7\)
Để P nguyên thì \(\frac{7}{\sqrt{x}+1}\in Z\)
do đó \(\frac{7}{\sqrt{x}+1}\in\left\{1,2,3,4,5,6,7\right\}\)
Đến đây xét từng TH là ra
rút gọn B ta có B=\(\frac{\sqrt{x}+6}{\sqrt{x}-1}\)\(\Rightarrow\)\(AB=\frac{\sqrt{x}+6}{\sqrt{x}+1}\in Z\)
=\(1+\frac{5}{\sqrt{x}+1}\)
Vì 1\(\in Z\) nên để P thuộc Z thì \(\frac{5}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\left(\sqrt{x}+1\right)\inƯ\left(5\right)=\pm1;\pm5\)
Đến đây thì ez rồi
\(ĐK:\)\(x\ge0;x\ne1;x\ne4\)
\(P=B:A=\frac{\sqrt{x}-2}{\sqrt{x}-1}:\frac{\sqrt{x}+3}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
\(P=\frac{1}{3}\)\(\Rightarrow\)\(\frac{\sqrt{x}-2}{\sqrt{x}+3}=\frac{1}{3}\)
\(\Rightarrow\)\(3\left(\sqrt{x}-2\right)=\sqrt{x}+3\)
\(\Leftrightarrow\)\(2\sqrt{x}-9=0\)
\(\Leftrightarrow\)\(2\sqrt{x}=9\)
\(\Leftrightarrow\)\(\sqrt{x}=\frac{9}{2}\)
\(\Leftrightarrow\)\(x=\frac{81}{4}\)
a) Với \(x\ge0;x\ne1\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{15\sqrt{x}-11-\left(3x-9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
Vậy : \(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
b) \(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{-5\left(\sqrt{x}+3\right)+17}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)
\(A_{max}\Leftrightarrow\left(\frac{17}{\sqrt{x}+3}\right)_{max}\)
Vì \(x\ge0;x\ne1\Rightarrow\hept{\begin{cases}\sqrt{x}\ge0\\\frac{17}{\sqrt{x}+3}>0\end{cases}A_{max}\Leftrightarrow}\left(\sqrt{x}+3\right)_{min}\Leftrightarrow\sqrt{x}_{min}\Leftrightarrow x=0\)
Vậy : \(A_{max}=\frac{17}{3}\Leftrightarrow x=0\)
c,d chưa làm được .-.
c) Để \(A=\frac{1}{2}\)
<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{1}{2}\)
<=> \(-10\sqrt{x}+4=\sqrt{x}+3\)
<=> \(-11\sqrt{x}=-1\)
<=> \(\sqrt{x}=\frac{1}{11}\)
<=> \(x=\frac{1}{121}\left(tm\right)\)
Vậy ...
d) \(A\le\frac{2}{3}\)
<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\le\frac{2}{3}\)
<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}-\frac{2}{3}\le0\)
<=> \(\frac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\sqrt{x}+9}\le0\)
<=> \(\frac{-17\sqrt{x}}{3\sqrt{x}+9}\le0\)
Vì \(\hept{\begin{cases}-17\sqrt{x}\le0\\3\sqrt{x}+9>0\end{cases}}\) \(\Rightarrow\frac{-17\sqrt{x}}{3\sqrt{x}+9}\le0\)(luôn đúng)
=> Ta có ĐPCM
\( a)A = \dfrac{{a - \sqrt a - 6}}{{4 - a}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{a + 2\sqrt a - 3\sqrt a - 6}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 3} \right)}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 3}}{{\sqrt a - 2}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 2}}{{\sqrt a - 2}} = - 1 \)
\( b)B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{x - 1}}\\ B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{\sqrt x + 1 + \sqrt x - 1 - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \dfrac{2}{{\sqrt x + 1}} \)
\(A=\left(\frac{a+\sqrt{a}}{\sqrt{a}+1}+1\right).\)\(\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\)
\(=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\)\(\left(\frac{-\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-1\right)\)
\(=\left(\sqrt{a}+1\right)\left(-\sqrt{a}-1\right)\)
\(=-\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)=-\left(\sqrt{a}+1\right)^2\)
\(b,A=-a^2\Rightarrow-\left(\sqrt{a}+1\right)^2=a^2\)
\(\Leftrightarrow a=\sqrt{a}+1\Rightarrow a-\sqrt{a}-1=0\)
\(\Rightarrow4a-4\sqrt{a}-4=0\)
\(\Rightarrow4a-4\sqrt{a}+1-5=0\)
\(\Rightarrow\left(2\sqrt{a}-1\right)^2-\sqrt{5}^2=0\)
\(\Rightarrow\left(2\sqrt{a}-1+\sqrt{5}\right)\left(2\sqrt{a}-1-\sqrt{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2\sqrt{a}=1-\sqrt{5}\\2\sqrt{a}=1+\sqrt{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=\frac{1-\sqrt{5}}{2}\\\sqrt{a}=\frac{1+\sqrt{5}}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}a=\frac{\left(1-\sqrt{5}\right)^2}{4}\left(tm\right)\\a=\frac{\left(1+\sqrt{5}\right)^2}{4}\left(tm\right)\end{cases}}\)
Ta có \(\frac{A}{B}=\frac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\right)=\frac{\sqrt{x}+4}{\sqrt{x}-1}:\left[\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\right]=\frac{\sqrt{x}+4}{\sqrt{x}-1}:\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}-1}:\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)=\sqrt{x}+4\)
Để \(\frac{A}{B}\ge\frac{x}{4}+5\) thì \(\sqrt{x}+4\ge\frac{x}{4}+5\Leftrightarrow\sqrt{x}\ge\frac{x}{4}+1\Leftrightarrow x-4\sqrt{x}+4\le0\Leftrightarrow\left(\sqrt{x}-2\right)^2\le0\)
Mà \(\left(\sqrt{x}-2\right)^2\ge0\)
Suy ra \(\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)(tm)
Vậy x=4 thì \(\frac{A}{B}\ge\frac{x}{4}+5\)
\(B=\frac{1}{\sqrt{x}-1}\) (tự rút gọn nha)
\(\frac{A}{B}\ge\frac{x}{4}+5\\ \sqrt{x}+4\ge\frac{x}{4}+5\\ \frac{x}{4}-\sqrt{x}+1\le0\\ x-4\sqrt{x}+4\le0\\ \left(\sqrt{x}-2\right)^2\le0\\ \Rightarrow\sqrt{x}-2=0\\ \Rightarrow x=4\)
Vậy để \(\frac{A}{B}\ge\frac{x}{4}+5\) thì x=4
\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\)
\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)
b) \(\frac{A}{B}=\frac{\sqrt{x}+4}{\sqrt{x-1}}:\frac{1}{\sqrt{x}-1}=\sqrt{x}+4\)
Để \(\frac{A}{B}\ge\frac{x}{4}+5\)
\(\Leftrightarrow\sqrt{x}+4\ge\frac{x}{4}+5\)
\(\Leftrightarrow4\sqrt{x}+16\ge x+20\)
\(\Leftrightarrow x-4\sqrt{x}+4\le0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2\le0\)
Mà \(\left(\sqrt{x}-2\right)^2\ge0;\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}-2\right)^2=0\)
\(\Leftrightarrow x=4\)
Vậy ...