Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A= \(\frac{3^{10}+1}{3^9+1}\) đặt B= \(\frac{3^{11}+1}{3^{10}+1}\)
Vì B<1 => B< \(\frac{3^{11}+1+2}{3^{10}+1+2}\) = \(\frac{3^{11}+3}{3^{10}+3}\) = \(\frac{3\cdot\left(3^{10}+1\right)}{3\cdot\left(3^9+1\right)}\) = \(\frac{3^{10}+1}{3^9+1}\) = A
Vậy B<A
Ta có :
\(\frac{3^{11}+1}{3^{10}+1}>1\) nên \(\frac{3^{11}+1}{3^{10}+1}>\frac{3^{11}+1+2}{3^{10}+1+2}=\frac{3^{11}+3}{3^{10}+3}=\frac{3\left(3^{10}+1\right)}{3\left(3^9+1\right)}=\frac{3^{10}+1}{3^9+1}\)
Vậy \(\frac{3^{11}+1}{3^{10}+1}>\frac{3^{10}+1}{3^9+1}\)
TL :
Ko biết thì đừng làm
Nhớ làm hết , chi tiết mới đc 1 SP
HT
Đặt C = A - 3 = \(1+3+3^2+...+3^{10}\)
\(\Rightarrow3C=3+3^2+3^3+...+3^{11}\)
\(\Rightarrow2C=3C-C=3^{11}-1\)
\(\Rightarrow C=\frac{3^{11}-1}{2}\) \(\Rightarrow A-3=\frac{3^{11}-1}{2}=\frac{3^{11}}{2}-\frac{1}{2}\)
\(\Rightarrow A=\frac{3^{11}}{2}-\frac{1}{2}+3=\frac{3^{11}}{2}+\frac{5}{2}>\frac{3^{11}}{2}=B\)
Vậy A > B
A = 1 + 3 + 32 + 33 + ....... + 310 và B = 311 / 2
Ta có A = 1 + 3 + 32 +....+ 310
3A = 3. ( 1 + 3 + .... + 310 )
3A = 3 + 32 + 33 +.......+ 311
3A - A = (3 + 32 + 33+ ...+ 311)- ( 1 + 3 + ....+ 310)
2A = 311 - 1
A = 311 - 1 / 2 thì < 311 / 2
=> A < B
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(N< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(N< 1-\frac{1}{100}\)
\(N< \frac{99}{100}< \frac{75}{100}=\frac{3}{4}\)
\(a,\)
Để A là phân số thì \(n-2\ne0\Rightarrow n\ne2\)
b, Ta có :
\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Mà \(3⋮n+2\Rightarrow n+2\inƯ(3)=\left\{\pm1;\pm3\right\}\)
Tự xét bảng
Vì 3^10+1/3^11+1 < 1
mà 3^11+1/3^10+1 > 1
suy ra:3^10+1/3^11+1 < 3^11+1/3^10+1