Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên bạn đi chứng minh bài toán:a>b thì \(\frac{a}{b}>\frac{a+m}{b+m}\)
rồi áp dụng vào bài toán này
\(\frac{2^{2006}+7}{2^{2004}+7}>\frac{2^{2006}+7+1}{2^{2004}+7+1}=\frac{2^{2006}+8}{2^{2004}+8}=\frac{2^3\left(2^{2003}+1\right)}{2^3\left(2^{2001}+1\right)}=\frac{2^{2003}+1}{2^{2001}+1}\)
Vậy \(\frac{2^{2006}+7}{2^{2004}+7}>\frac{2^{2003}+1}{2^{2001}+1}\)
Đấy thế là xong!
A B C D 30 m 675 m^2 E
Đặt các điểm như hình trên thì AB = 0,6 CD ; AB + 30 m = CD (BE = 30 m) ; SABCD + 675 m2 = SAECD (SBEC = 675 m2)
AECD là hình chữ nhật nên CE là đường cao tam giác BEC ; CE = AD
=> AD = 2 x SBEC : BE = 2 x 675 : 30 = 45 (m)
AB + 30 m = CD mà AB = 0,6 CD nên 0,6 CD + 30 m = CD => 0,4 CD = 30 m => CD = 75 m => AB = 45 m
=> SABCD = (AB + CD) x AD : 2 = (75 + 45) x 45 : 2 = 2700 (m2)
So sánh\(A=\frac{2^{2006}+7}{2^{2004}+7}\)và\(B=\frac{2^{2003}+1}{2^{2001}+1}\)
A A > B
B A = B
C A < B
Đặt\(A=\dfrac{2^{2006}+7}{2^{2004}+7};B=\dfrac{2^{2003}+1}{2^{2001}+1}\)
\(A-B=\dfrac{2^{2006}+7}{2^{2004}+7}-\dfrac{2^{2003}+1}{2^{2001}+1}\)
\(=\dfrac{2^{4007}+2^{2006}+7.2^{2001}+7-2^{4007}+2^{2004}+7-2^{2003}.7}{\left(2^{2001}+1\right)\left(2^{2004}+7\right)}\)
\(=\dfrac{2^{2001}\left(7+2^5+2^3-7.2^2\right)}{\left(2^{2001}+1\right)\left(2^{2004}+7\right)}\)
=\(\dfrac{19.2^{2001}+14}{\left(2^{2001}+1\right)\left(2^{2004}+7\right)}>0\)
\(\Rightarrow A>B\)
Chúc Bạn Học Tốt Và Đạt Nhiều Thành Tích Tốt Trong Học Tập!
Ta có \(\frac{2^{2007}+1}{2^{2004}+1}=\frac{2^3\left(2^{2004}+1\right)-7}{2^{2004}+1}=8-\frac{7}{2^{2004}+1}\)
\(\frac{2^{2009}+1}{2^{2006}+1}=\frac{2^3\left(2^{2006}+1\right)-7}{2^{2006}+1}=8-\frac{7}{2^{2006}+1}\)
Ta thấy \(2^{2004}+1< 2^{2006}+1\Rightarrow\frac{7}{2^{2004}+1}>\frac{7}{2^{2006}+1}\)
\(\Rightarrow8-\frac{7}{2^{2004}+1}< 8-\frac{7}{2^{2006}+1}\Rightarrow\frac{2^{2007}+1}{2^{2004}+1}< \frac{2^{2009}+1}{2^{2006}+1}\)