\(\frac{15-2\sqrt{10}}{3}và\sqrt{15}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2020

1)  \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)

              \(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0

=> A=3

28 tháng 8 2020

2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)

 \(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

​​\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)

       \(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)

Mà A >0 

=> A=2

Mà 4>3

=> \(\sqrt{4}=2>\sqrt{3}\)

=> \(A>\sqrt{3}\)

26 tháng 8 2020

B2:

3) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)

\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{2020}-\sqrt{2019}}{2020-2019}\)

\(=\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{2020}-\sqrt{2019}\)

\(=\sqrt{2020}-1\)

31 tháng 8 2018

Xét A-B=5-\(\sqrt{10}\)(2/3+1)= 5-\(\frac{5\sqrt{10}}{3}\)=5(1-\(\frac{\sqrt{10}}{3}\)) < 0

Vậy A<B

31 tháng 8 2018

\(2\sqrt{10}=\sqrt{4\cdot10}=\sqrt{40}>\sqrt{36}=6\Rightarrow2\sqrt{10}>6\)

\(\Rightarrow15-2\sqrt{10}< 15-6=9\Rightarrow\frac{15-2\sqrt{10}}{3}< \frac{9}{3}=3\)mà \(3=\sqrt{9}< \sqrt{10}\Rightarrow\frac{15-2\sqrt{10}}{3}< \sqrt{10}\)