Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S=1/12+1/13+1/14+1/15+...+1/23
ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)
đặt A=1/12+1/13+1/14+...+1/17
ta có
1/13<1/12
1/14<1/12
..........................
.........................
1/17<1/12
=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)
=>A<1x6/12
=>A<1/2 (1)
Đặt B=1/18+1/19+...+11/23
ta có
1/19<1/18
1/20<1/18
...........................
..........................
1/23<1/18
=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)
=>B<1x 6/18
=>B<1/3 (2)
từ 1 và 2 =>S=A+B<1/2+1/3
=>S<5/6 (dpcm)
k cho mình nhé
Đặt S=1/12+1/13+1/14+1/15+...+1/23
ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)
đặt A=1/12+1/13+1/14+...+1/17
ta có
1/13<1/12
1/14<1/12
..........................
.........................
1/17<1/12
=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)
=>A<1x6/12
=>A<1/2 (1)
Đặt B=1/18+1/19+...+11/23
ta có
1/19<1/18
1/20<1/18
...........................
..........................
1/23<1/18
=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)
=>B<1x 6/18
=>B<1/3 (2)
từ 1 và 2 =>S=A+B<1/2+1/3
=>S<5/6 (dpcm)
k cho mình nhé
a) \(\frac{7}{5}.\frac{-31}{125}.\frac{1}{2}.\frac{10}{17}.\frac{-1}{2^3}=\frac{7.\left(-31\right).1.10.\left(-1\right)}{5.2.125.17.2^3}=\frac{31.7}{17.125.2^3}=\frac{217}{17000}\)
b) \(\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).\left(\frac{-5}{12}+\frac{1}{4}+\frac{1}{6}\right)=\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).0=0\)
c) \(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{3.4.5...100}{2.3.4...99}=\frac{100}{2}=50\)
d) \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-99}{100}=\frac{-\left(1.2.3..99\right)}{2.3.4...100}=-\frac{1}{100}\)
e) \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}=\frac{\left(1.2.3..29\right).\left(3.4.5...31\right)}{\left(2.3.4...30\right).\left(2.3.4...30\right)}\)
\(=\frac{1.31}{30.2}=\frac{31}{60}\)
Nhanh nhanh giùm với
\(\frac{1}{4}+\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+\frac{1}{74}+\frac{1}{75}+\frac{1}{76}\)= 0,4330783347
\(\frac{1007}{2013}\)= 0, 5002483855
Vậy :\(\frac{1}{4}+\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+\frac{1}{74}+\frac{1}{75}+\frac{1}{76}\) < \(\frac{1007}{2013}\)