\(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\) và \(\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

Nhận xét : trong các phân số cùng tử, phân số nào có mẫu lớn hơn thì lớn hơn.

Ta nhận thấy rằng: \(\frac{1}{2010}< \frac{1}{2009}< \frac{1}{1007}\)

\(\frac{1}{2011}< \frac{1}{2009}< \frac{1}{1007}\)

\(\frac{1}{2012}< \frac{1}{2009}< \frac{1}{1007}\)

Ta thấy các phân số \(\frac{1}{2010};\frac{1}{2011};\frac{1}{2012}< \frac{1}{2009}< \frac{1}{2007}\)

\(\Rightarrow\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}< \frac{1}{2009}+\frac{1}{1007}\)

11 tháng 3 2019

\(\frac{x+1}{2012}+\frac{x+2}{2011}=\frac{x+3}{2010}+\frac{x+4}{2009}\)

\(\Leftrightarrow\frac{x+1}{2012}+1+\frac{x+2}{2011}+1=\frac{x+3}{2010}+1+\frac{x+4}{2009}+1\)

\(\Leftrightarrow\frac{x+2013}{2012}+\frac{x+2013}{2011}=\frac{x+2013}{2010}+\frac{x+2013}{2009}\)

\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right)=0\Leftrightarrow x=-2013\)

11 tháng 3 2019

\(\frac{x+1}{2012}+\frac{X+2}{2011}=\frac{X+3}{2010}+\frac{X+4}{2009}.\)

\(\Leftrightarrow\frac{X+1}{2012}+\frac{X+2}{2011}+2=\frac{X+3}{2010}+\frac{X+4}{2009}+2\)

\(\Leftrightarrow\frac{x+1}{2012}+1+\frac{x+2}{2011}+1=\frac{x+3}{2010}+1+\frac{x+4}{2009}+1\)

\(\Leftrightarrow\frac{x+2013}{2012}+\frac{x+2013}{2012}=\frac{x+2013}{2010}+\frac{x+2013}{2009}\)

\(\Leftrightarrow\left(x+2013\right).\left\{\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right\}=0\)

Mà \(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}>0\)

\(\Leftrightarrow x+2013=0\)

\(\Leftrightarrow x=-2013\)

KL ; PT có Nghiệm \(S=\left\{-2013\right\}\)

22 tháng 9 2019

Dễ thấy: \(2008^3+1>0\)\(2008^2-2007>0\)

Nên \(\frac{2008^3+1}{2008^2-2007}>0\Leftrightarrow A>0\)

và \(2009-2010< 0\)\(2009^3-1>0\)

\(\Rightarrow\frac{2009^3-1}{2009-2010}< 0\Leftrightarrow B< 0\)

Vậy A > B

2 tháng 3 2020

\(a,⇔\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)

\(⇔(x-23)(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27})=0\)

\(⇔x-23=0\) (vì \(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}>0\))

\(⇔x=23\)

\(b,⇔\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}+\frac{x+100}{95}=0\)

\(⇔(x+100)(\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95})=0\)

\(⇔x+100=0\) (vì \(\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95}>0\))

\(⇔x=-100\)

\(c,⇔(\frac{x+1}{2012}+1)+(\frac{x+2}{2011}+1)=(\frac{x+3}{2010}+1)+(\frac{x+4}{2009}+1)\)

\(⇔\frac{x+2013}{2012}+\frac{x+2013}{2011}-\frac{x+2013}{2010}-\frac{x+2013}{2009}=0\)

\(⇔(x+2013)(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009})=0\)

\(⇔x+2013=0\) (vì \(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}<0\))

\(⇔x=-2013\)

2 tháng 3 2020

\(\frac{201-x}{99}+\frac{203}{97}=\frac{205}{95}+3\)

\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)

\(\frac{2-x}{2010}-1=\frac{1-x}{2011}-\frac{x}{2012}\)

Giúp mk với ạ

22 tháng 2 2020

lấy cả 2 vế trừ đi 3

22 tháng 2 2020

\(\frac{x-2010-2011}{2009}+\frac{x-2009-2011}{2010}+\frac{x-2009-2010}{2011}=3\)

\(\Leftrightarrow\left(\frac{x-2010-2011}{2009}-1\right)+\left(\frac{x-2009-2011}{2010}-1\right)+\left(\frac{x-2009-2010}{2011}-1\right)=0\)

\(\Leftrightarrow\frac{x-6030}{2009}+\frac{x-6030}{2010}+\frac{x-6030}{2011}=0\)

\(\Leftrightarrow\left(x-6030\right)\left(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}\right)\)

\(\Leftrightarrow x-6030=0\)(vì \(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}>0\))

\(\Leftrightarrow x=6030\)

Vậy ................

8 tháng 5 2020

\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)  ( có lẽ đề như này ) 

\(\Leftrightarrow\frac{x-1}{2013}-1+\frac{x-2}{2012}-1+\frac{x-3}{2011}-1=\frac{x-4}{2010}-1+\frac{x-5}{2009}-1+\frac{x-6}{2008}-1\)

\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2014}{2011}-\frac{x-2014}{2010}-\frac{x-2014}{2009}-\frac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

\(\Leftrightarrow x-2014=0\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\right)\)

\(\Leftrightarrow x=2014\)

...

Ta có : \(x^2+9x+20=x^2+4x+5x+20=\left(x+4\right)\left(x+5\right)\)

\(x^2+11x+30=x^2+5x+6x+30=\left(x+5\right)\left(x+6\right)\)

\(x^2+13x+42=x^2+6x+7x+42=\left(x+6\right)\left(x+7\right)\)

\(\Rightarrow Pt\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\) (*)\(ĐKXĐ:x\ne-4;x\ne-5;x\ne-6;x\ne-7\)

(*) \(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow3.18=x^2+4x+7x+28\)

\(\Leftrightarrow x^2-2x+13x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-13\left(tm\right)\end{cases}}}\)

14 tháng 3 2019

\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)

\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

tự làm nốt~

14 tháng 3 2019

kudo shinichi làm sai ở chỗ:

\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé