K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

Đặt \(A=\dfrac{2003.2004-1}{2003.2004}\)\(B=\dfrac{2004.2005-1}{2004.2005}\)

Ta có : \(A=\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2003.2004}\)

\(=1-\dfrac{1}{2003.2004}\)

\(B=\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}\)

\(=1-\dfrac{1}{2004.2005}\)

\(\dfrac{1}{2003.2004}>\dfrac{1}{2004.2005}\Rightarrow1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\)

Nên \(A< B\)

Vậy \(\dfrac{2003.2004-1}{2003.2004}< \dfrac{2004.2005-1}{2004.2005}\)

~ Học tốt ~

27 tháng 2 2018

a) Ta có: \(\frac{n}{n-3}\)có tử số lớn hơn mẫu số. \(\Rightarrow\frac{n}{n-3}>1\)

Ta lại có: \(\frac{\left(n+1\right)}{n+2}< 1\)( vì \(\frac{\left(n+1\right)}{n+2}\) có tử bé hơn mẫu)

\(\Rightarrow\frac{n}{n-3}>\frac{\left(n+1\right)}{n+2}\)

b) 

Mà: \(\frac{2003.2004-1}{2003.2004}=1\)( Loại hai số giống nhau ở cả tử và mẫu: 2003 , 2004)

Còn: \(\frac{2004.2005-1}{2004.2005}=1\)

\(\Rightarrow\frac{2003.2004-1}{2003.2004}=\frac{2004.2005-1}{2004.2005}\)

P/s: Mình không chắc câu b) Nhé

27 tháng 2 2018

Ta thấy : n > n - 3

=> \(\frac{n}{n-1}>1\)

Có : n + 1 < n + 2

=> \(\frac{n+1}{n+2}< 1\)

=> \(\frac{n}{n-3}>\frac{n+1}{n+2}\)

5 tháng 3 2022

\(\dfrac{2004.2005-1}{2004.2005}=1-\dfrac{1}{2004.2005}\)

\(\dfrac{2005.2006-1}{2004.2006}=1-\dfrac{1}{2005.2006}\)

\(Vì\dfrac{1}{2004.2005}>\dfrac{1}{2005.2006}\Rightarrow1-\dfrac{1}{2004.2005}< 1-\dfrac{1}{2005.2006}\Rightarrow\dfrac{2004.2005-1}{2004.2005}< \dfrac{2005.2006-1}{2004.2006}\)

5 tháng 3 2022

Mình cảm ơn

30 tháng 8 2016

Câu hỏi của linh phạm - Toán lớp 6 - Học toán với OnlineMath

Cho A=\(\dfrac{2003}{2004}\)+\(\dfrac{2004}{2005}\); B=\(\dfrac{2003+2004}{2004+2005}\)

Ta có: B=\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)

Vì: \(\dfrac{2003}{2004+2005}< \dfrac{2003}{2004}\)

\(\dfrac{2004}{2004+2005}< \dfrac{2004}{2005}\)

=>\(\dfrac{2003}{2004+2005}+\dfrac{2004}{2004+2004}< \dfrac{2003}{2004}+\dfrac{2004}{2005}\)

=>\(\dfrac{2003+2004}{2004+2005}< \dfrac{2003}{2004}+\dfrac{2004}{2005}\)

=>B<A

Vậy B<A

13 tháng 9 2017

A = \(\frac{2004-2003}{2004+2003}\)và  B = \(\frac{2004^2-2003^2}{2004^2+2003^2}\)

Ta đặt : 2004 = x

             2003 = y

Theo tính chất cơ bản của phân thức , ta có :

\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+y^2+2xy}\)       ( 1 )

Vì x > 0 , y > 0 nên x2 + y2 + 2xy > x2 + y2

\(\Rightarrow\frac{x^2-y^2}{x^2+y^2+2xy}< \frac{x^2-y^2}{x^2+y^2}\)      ( 2 )

Từ ( 1 ) và ( 2 ) 

\(\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

Vậy A < B

https://h.vn/hoi-dap/tim-kiem?q=so+s%C3%A1nh+2+ph%C3%A2n+s%E1%BB%91++A=+2004%5E2003++1+/+2004%5E2004++1++B=2004%5E2002+1/2004%5E2003++1&id=238505