Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét phân số trung gian là \(\dfrac{72}{78}\) , ta thấy:
\(\dfrac{72}{73}>\dfrac{72}{78}\)
\(\dfrac{58}{78}< \dfrac{72}{78}\)
\(\Rightarrow\dfrac{72}{73}>\dfrac{58}{78}\)
b. Xét phân số trung gian là \(\dfrac{n}{n+2}\) , ta thấy:
\(\dfrac{n}{n+3}< \dfrac{n}{n+2}\)
\(\dfrac{n}{n+2}< \dfrac{n+1}{n+2}\)
\(\Rightarrow\dfrac{n}{n+3}< \dfrac{n+1}{n+2}\)
c. Ta có: \(\dfrac{10^{11}-1}{10^{12}-1}< 1\) (vì tử < mẫu)
\(\Rightarrow\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{\left(10^{11}-1\right)+11}{\left(10^{12}-1\right)+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10^{10}+1}{10^{11}+1}\)
Vậy \(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{10}+1}{10^{11}+1}\)
d. Xét phân số trung gian là \(\dfrac{1}{4}\) , ta thấy:
\(\dfrac{12}{47}>\dfrac{12}{48}=\dfrac{1}{4}\)
\(\dfrac{19}{77}< \dfrac{19}{76}=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{12}{47}>\dfrac{19}{77}\)
Ta luôn có nếu a>0; b>0 thì \(\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)
Áp dụng vào bài toán ta thấy 1011-1 > 0 và 1012-1 > 0 nên
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
Vậy A < B
Xin lỗi bn nhé bài toán phụ phía trên đang còn 1 đk nữa là a<b
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Leftrightarrow10A=\frac{10\left(10^{11}-1\right)}{\left(10^{12}-1\right)}=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\left(1\right)\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Leftrightarrow10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{9}{10^{11}+1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A< B\)
Nếu có 1 phân số a/b < 1 thì a/b < a+n/b+n.
Tương tự ta có: A < (10^11 -1)+11/(10^12 -1)+10
A < 10^11+10/10^12+10
A < 10(10^10+1)/10(10^11+1)
A < 10(10^10+1)/10(10^11+1)
A < 10^10+1/10^11+1
Vậy A < B
Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1
Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)
10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1
Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)
Từ (1) và (2) => 10A < 10B
=> A < B
Tk mk nha
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\); \(\frac{10^{10}+1}{10^{11}+1}< 1\)
\(\Rightarrow\)\(A,B< 1\)
Ta có:
\(10^{11}-1>10^{10}+1\); \(10^{12}-1>10^{11}+1\)
\(\Rightarrow A>B\)
Vậy A > B
\(=\left(\dfrac{1}{12}+\dfrac{11}{12}\right)+\left(\dfrac{1}{5}-\dfrac{6}{5}\right)+\dfrac{1}{71}=1-1+\dfrac{1}{71}=\dfrac{1}{71}\)
8)\(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)
=\(\frac{4}{9}:\left(-\frac{1}{7}\right)+\frac{59}{9}:\left(-\frac{1}{7}\right)\)
=\(\left(\frac{4}{9}+\frac{59}{9}\right).\left(-7\right)\)
=7.(-7)
=-49
a: \(A=\dfrac{2^{12}\cdot3^{10}+2^3\cdot2^9\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
b: \(B=\left(\dfrac{12}{105}+\dfrac{9^{15}}{3}\right)\cdot\dfrac{1}{3}\cdot\dfrac{6^8}{6^4\cdot2^4}\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot\dfrac{1}{3}\cdot3^4\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot3^3=\dfrac{9\left(12+35\cdot9^{15}\right)}{35}\)
Ta có :
\(A=\dfrac{10^{11}-1}{10^{12}-1}< 1\)
\(\Leftrightarrow A< \dfrac{10^{11}-1+11}{10^{12}-1+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\dfrac{10^{10}+1}{10^{11}+1}=B\)
Vậy \(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{10}+1}{10^{11}+1}\)
Vậy...
Vì \(10^{11}-1< 10^{12}-1\)
\(\Rightarrow\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{11}-1+11}{10^{12}-1+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10^{10}+1}{10^{11}+1}\)