\(C=\frac{2\sqrt{x}+1+x}{\sqrt{x}}\) và 4

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)

\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)

\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)

\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)

\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))

8 tháng 7 2020

a)  \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne9\end{cases}}\)

\(C=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)

\(\Leftrightarrow C=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{9-x}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{x-3\sqrt{x}}\)

\(\Leftrightarrow C=\frac{3\sqrt{x}+9}{9-x}:\frac{2\sqrt{x}+4}{x-3\sqrt{x}}\)

\(\Leftrightarrow C=\frac{3}{3-\sqrt{x}}\cdot\frac{x-3\sqrt{x}}{2\sqrt{x}+4}\)

\(\Leftrightarrow C=\frac{-3}{2\sqrt{x}+4}\)

b) Để \(-\frac{3}{2\sqrt{x}+4}< -1\)

\(\Leftrightarrow\frac{1+2\sqrt{x}}{2\sqrt{x}+4}< 0\)

Vì \(\hept{\begin{cases}1+2\sqrt{x}>0\\2\sqrt{x}+4>0\end{cases}\Leftrightarrow C>0}\)

Vậy để C <-1 <=> \(x\in\varnothing\)

c) \(A=\frac{1}{\sqrt{3}-\sqrt{2}}=\sqrt{3}+\sqrt{2}\)

\(\Leftrightarrow A^2=3+2+2\sqrt{5}=5+2\sqrt{5}\)

   \(B=\sqrt{5}+1\)

\(\Leftrightarrow B^2=5+1+2\sqrt{5}=6+2\sqrt{5}\)

Vì \(5+2\sqrt{5}< 6+2\sqrt{5}\)

\(\Leftrightarrow A^2< B^2\)

\(\Leftrightarrow A< B\)

Vậy \(\frac{1}{\sqrt{3}-\sqrt{2}}< \sqrt{5}+1\)

Ta có : \(\frac{\sqrt{x}}{\sqrt{x}+1}=\frac{\sqrt{x}+1-1}{\sqrt{x}+1}=1-\frac{1}{\sqrt{x}+1}\)

\(\frac{x-4}{x+2\sqrt{x}}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}=1-\frac{2}{\sqrt{x}}\)

ta xét  : \(\frac{2}{\sqrt{x}}\ge\frac{1}{\sqrt{x}+1}\)

\(\Rightarrow1-\frac{1}{\sqrt{x}+1}\ge1-\frac{2}{\sqrt{x}}\Leftrightarrow N\ge H\)

15 tháng 10 2016

Ta có

N = \(\frac{\sqrt{x}}{\sqrt{x}+1}=1-\frac{1}{\sqrt{x}+1}\)

M = \(\frac{x-4}{x+2\sqrt{x}}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}\)

\(1-\frac{2}{\sqrt{x}}\)

=> N - M = \(\frac{2}{\sqrt{x}}-\frac{1}{\sqrt{x}+1}=\frac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}>0\)

Vậy N > M

13 tháng 3 2020

a) M = \(\frac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}-\frac{\left(x\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(x-1\right)}+\frac{x^2-1}{\sqrt{x}\left(x-1\right)}\)(x>0;x khác 1)

\(\frac{x^2-\sqrt{x}+x\sqrt{x}-1-x^2-\sqrt{x}+x\sqrt{x}+1+x^2-1}{\sqrt{x}\left(x-1\right)}\)

\(\frac{x^2+2x\sqrt{x}-2\sqrt{x}-1}{\sqrt{x}\left(x-1\right)}\)

\(\frac{2\sqrt{x}\left(x-1\right)+\left(x-1\right)\left(x+1\right)}{\sqrt{x}\left(x-1\right)}\)

\(\frac{\left(x-1\right)\left(2\sqrt{x}+x+1\right)}{\sqrt{x}\left(x-1\right)}\)

\(\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

b) M = 9/2

<=> \(\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}=\frac{9}{2}\)

<=> \(2x+4\sqrt{x}+2=9\sqrt{x}\)

<=> \(2x-5\sqrt{x}+2=0\)

<=> \(2x-\sqrt{x}-4\sqrt{x}+2=0\)

<=> \(\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

<=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=4\end{cases}\left(tm\right)}\)

Vậy...

c) \(\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)\(\frac{x+2\sqrt{x}+1}{\sqrt{x}}=2+\frac{x+1}{\sqrt{x}}\ge2+\frac{2\sqrt{x}}{\sqrt{x}}=4\)

Dấu "=" xảy ra <=> x = 1.

Vậy M >=4 

13 tháng 9 2019

\(C=\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)^2\)

\(=\sqrt{x}-1\)

Ta co:

\(\sqrt{x}-1+\frac{2}{\sqrt{x}}=\frac{x-\sqrt{x}+2}{\sqrt{x}}=\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}{\sqrt{x}}>0\)

\(\Rightarrow\sqrt{x}-1>-\frac{2}{\sqrt{x}}\)

15 tháng 8 2017

Bài 2:Áp dụng BĐT AM-GM ta có:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)

\(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}\)

\(\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}\)

CỘng theo vế 3 BĐT trên có: 

\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)

Khi x=y=z

15 tháng 8 2017

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(..........................\)

\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng theo vế ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)