Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{2014}{2014^a}+\frac{2014}{2014^b}\)=B=\(\frac{2013}{2015^a}\)+\(\frac{2015}{2013^b}\)
Ta có: 2014/\(2014^a\)+2014/2014^b= 2013/2014^a + 1/2014^a +2015/2014^a - 1/2014^a
=(2013/2014^a + 2015/2014^b) + ( 1/2014^a + 1/2014^b)
= B + (1/2014^a + 1/2014^b)
*Nếu a=b thì A=B
*Nếu a>b thì (1/2014^a + 1/2014^b) >0
\(\Rightarrow\) A< B
*Nếu a<b thì (1/2014^a + 1/2014^b)>0
\(\Rightarrow\) A>B
\(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
=> a = 1; b = 2; c = 3; d = 4.
\(\frac{30}{43}\)=\(\frac{1}{\frac{43}{30}}\)= \(\frac{1}{1+\frac{13}{30}}\)=\(\frac{1}{1+\frac{1}{2+\frac{4}{13}}}\)=\(\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
=> a=1,b=2,c=3,d=4.
Suy nghĩ đi, chỗ nào ko hiểu hỏi mình, lát mình quay lại giờ mình bận.
1+2+3+...+n=aaa
\(=>\frac{n\left(n+1\right)}{2}=aaa\)
=>n(n+1)=aaa.2=a.111.2=a.3.37.2=6a.37
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên 6a.37 cũng là tích 2 số tự nhiên liên tiếp
+)6a=36=>a=6 (TM)
+)6a=38=>a=19/3 (không TM)
do đó a=6 thỏa mãn
Khi đó n(n+1)=1332=36.37=36.(36+1)
=>n=36
Vậy n=36;a=6
A=\(\frac{4n+3}{2n+1}\) B=\(\frac{6n+2}{n+1}\)
tìm các số tự nhiên n để các phân số trên là tối giản
Ta có : \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{100}<1\)
Mà \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<1\) nên A không phải số tự nhiên
Ta có :
\(\frac{1+2+3+...+a}{a}<\frac{1+2+3+...+b}{b}\)
\(\Leftrightarrow\frac{a\left(a+1\right)}{a}<\frac{b\left(b+1\right)}{b}\)
<=> a + 1 < b + 1
<=> a < b
có 1+2+3+...+a/a<1+2+3+...+b/b
=>(a+1)(a-1+1):2/a<(b+1)(b-1+1):2/b
<=>(a+1)a:2/a<(b+1)b;2/b
<=>a+1<b+1
<=>a<b
vậy a<b