K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

1.

Ta có: \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)

\(\Rightarrow\frac{1}{2}a.\frac{1}{6}=\frac{2}{3}b.\frac{1}{6}=\frac{3}{4}c.\frac{1}{6}\)

\(\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)

\(\Rightarrow\hept{\begin{cases}a=5.12=60\\b=5.9=45\\c=5.8=40\end{cases}}\)

Vậy \(\hept{\begin{cases}a=60\\b=45\\c=40\end{cases}}\)

23 tháng 7 2019

2.  Đặt \(a_1+a_2+...+a_n=d\)

ÁP dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\frac{x_1}{a_1}=\frac{x_2}{a_2}=...=\frac{x_n}{a_n}=\frac{x_1+x_2+...+x_n}{a_1+a_2+...+a_n}=\frac{c}{d}\)

\(\Rightarrow x_1=\frac{c}{d}.a_1;x_2=\frac{c}{d}.a_2;....;x_n=\frac{c}{d}.a_n\)

27 tháng 12 2016

Ta có

\(\hept{\begin{cases}a_2^2=a_1.a_3\\a_3^2=a_2.a_4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a_1}{a_2}=\frac{a_2}{a_3}\\\frac{a_2}{a_3}=\frac{a_3}{a_4}\end{cases}}}\)

\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(1\right)\)

Ta lại có

\(\frac{a_2^2}{a_3^2}=\frac{a_1.a_3}{a_2.a_4}\)

\(\frac{a_2^3}{a_3^3}=\frac{a_1}{a_4}\left(2\right)\)

Từ (1) và (2)

\(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)

27 tháng 12 2016

http://h.vn/hoi-dap/question/157445.html

21 tháng 10 2020

\(a_1/a_2 = ... = a_9/a_1 = (a_1+...+a_9)/(a_2+...+a_9 +a_1) =1\)

5 tháng 4 2018

Vì a1,a2,a3 .... aN nhận các giá trị của 1 hoặc -1

=> a1a2,a2a3,.....aNa1 cũng nhận các giá trị của 1 hoặc -1

mà a1a2+a2a3+a3a4+...+aNa1=0

Nên n số hạng có tổng m giá trị bằng 1, và m giá trị bằng -1

=> n=m+m=2m (m thuộc N*) (1)

Mặt khác a1a2a3a4....aNa1=(a1a2a3a4...aNa1)2>0

Nên thừa số nguyên âm là chẵn

=> m=2p (p thuộc N*) (2)

Từ (1) và (2) say ra: n=2(2.p) = 4p chia hết cho 4

4 tháng 8 2017

\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\)

\(=\frac{a_1-1+a_2-2+a_3-3+...+a_9-9}{9+8+7+...+1}\)(Dãy tỉ số bằng nhau)

\(=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+3+...+9\right)}{9+8+7+...+1}\)\(=\frac{90-45}{45}=1\)

\(\Rightarrow a_1-1=9;a_2-2=8;...;a_9-9=1\)

\(\Rightarrow a_1=a_2=a_3=...=a_9=10\).