\(\sqrt{15}+\sqrt{2}\)và \(\sqrt{14}+\sq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2021

a) \(\sqrt{15}< \sqrt{16}=4\)

\(\sqrt{2}< \sqrt{4}=2\)

\(\Rightarrow\sqrt{15}+\sqrt{2}< \sqrt{16}+\sqrt{4}=4+2=6\)

\(\sqrt{14}< \sqrt{16}=4\)

\(\sqrt{3}< \sqrt{9}=3\)

\(\Rightarrow\sqrt{14}+\sqrt{3}< \sqrt{16}+\sqrt{9}=4+3=7\)

\(\Leftrightarrow\sqrt{15}+\sqrt{2}< \sqrt{14}+\sqrt{3}\)( nhận thấy 6 < 7)

b) \(\sqrt{29}-\sqrt{28}=\frac{29-28}{\sqrt{29}+\sqrt{28}}=\frac{1}{\sqrt{29}+\sqrt{28}}\)

\(\sqrt{28}-\sqrt{27}=\frac{28-27}{\sqrt{28}+\sqrt{27}}=\frac{1}{\sqrt{28}+\sqrt{27}}\)

Mà \(\sqrt{29}+\sqrt{28}>\sqrt{28}+\sqrt{27}\)

\(\Rightarrow\frac{1}{\sqrt{29}+\sqrt{28}}< \frac{1}{\sqrt{28}+\sqrt{27}}\)

\(\Rightarrow\sqrt{29}-\sqrt{28}< \sqrt{28}-\sqrt{27}\)

30 tháng 8 2020

\(a\)

\(\sqrt{7}+\sqrt{15}\) 

\(=\sqrt{7+15}\)

\(=4,69\)

\(4,69< 7\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

\(b\)

\(\sqrt{7}+\sqrt{15}+1\)

\(=\sqrt{7+15}+1\)

\(=4,69+1\)

\(=5,69\)

\(\sqrt{45}\)

\(=6,7\)

\(5,69< 6,7\)

\(\Rightarrow\)\(\sqrt{7}+\sqrt{15}+1\)\(< \)\(\sqrt{45}\)

\(c\)

\(\frac{23-2\sqrt{19}}{3}\)

\(=\frac{22.4,53}{3}\)

\(=\frac{95,7}{3}\)

\(=31,9\)

\(\sqrt{27}\)

\(=5,19\)

\(31,9>5,19\)

\(\text{​​}\Rightarrow\text{​​}\text{​​}\)\(\frac{23-2\sqrt{19}}{3}\)\(>\sqrt{27}\)

\(d\)

\(\sqrt{3\sqrt{2}}\)

\(=\sqrt{3.1,41}\)

\(=\sqrt{4,23}\)

\(=2,05\)

\(\sqrt{2\sqrt{3}}\)

\(=\sqrt{2.1,73}\)

\(=\sqrt{3,46}\)

\(=1,86\)

\(2,05>1,86\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

\(Học \) \(Tốt !!!\)

30 tháng 8 2020

a) Ta có : \(\sqrt{7}< \sqrt{9}=3;\sqrt{15}< \sqrt{16}=4\)

Do đó : \(\sqrt{7}+\sqrt{15}< 3+4=7\)

b) Ta có : \(\sqrt{17}>\sqrt{16}=4;\sqrt{5}>\sqrt{4}=2\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>4+2+1=7\)

Lại có : \(\sqrt{45}< \sqrt{49}< 7\)

Do đó : \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

c) Ta thấy : \(\sqrt{19}>\sqrt{16}=4\)

\(\Rightarrow2\sqrt{19}>2.4=8\)

\(\Rightarrow-2\sqrt{19}< -8\)

\(\Rightarrow23-2\sqrt{19}< 23-8=15\)

\(\Rightarrow\frac{23-2\sqrt{19}}{3}< 5\). Mặt khác : \(\sqrt{27}>\sqrt{25}=5\)

Nên : \(\frac{23-2\sqrt{19}}{3}< \sqrt{27}\)

d) Vì : \(18>12>0\Rightarrow\sqrt{18}>\sqrt{12}>0\)

\(\Leftrightarrow3\sqrt{2}>2\sqrt{3}>0\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

6 tháng 7 2018

Tính ra rồi so sánh

6 tháng 7 2018

a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)

ta có \(\sqrt{5}>\sqrt{3}\)\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)

31 tháng 7 2018

a)\(\sqrt{8}+3< \sqrt{9}+3=3+3=6< 6+\sqrt{2}\)

b)\(14=\sqrt{196}>\sqrt{195}=\sqrt{13.15}=\sqrt{13}.\sqrt{15}\)

c) Ta có: \(\hept{\begin{cases}\sqrt{27}>\sqrt{25}=5\\\sqrt{6}>\sqrt{4}=2\end{cases}\Rightarrow\sqrt{27}+\sqrt{6}+1>5+2+1=8}\)

Mà \(\sqrt{48}< \sqrt{49}=7< 8\)

\(\Rightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)

Tham khảo nhé~

16 tháng 6 2017

a)    \(\sqrt{7}-\sqrt{5}< \sqrt{5}-\sqrt{3}\)

b)     \(\sqrt{15}-\sqrt{14}< \sqrt{14}-\sqrt{13}\)

24 tháng 8 2020

1.a)

\(2\sqrt{3}=\sqrt{12}>\sqrt{9}=3.\)

\(3\sqrt{2}=\sqrt{18}>\sqrt{16}=4.\)

Suy ra VT > 7

1.b)

\(\sqrt{16}+\sqrt{25}=4+5=9\)

2.a)

\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(3\sqrt{2}\right)^2-6\sqrt{6}+3}=3\sqrt{2}-\sqrt{3}\)

b)\(\sqrt{9-2\sqrt{14}}=\sqrt{\frac{18-4\sqrt{14}}{2}}=\frac{\sqrt{14}-2}{\sqrt{2}}=\sqrt{7}-1\)

Các câu còn lại bạn làm tương tự nhé!

25 tháng 8 2020

c) \(\sqrt{4-\sqrt{7}}=\frac{1}{\sqrt{2}}.\sqrt{8-2\sqrt{7}}=\frac{1}{\sqrt{2}}\sqrt{7-2\sqrt{7}+1}\)

\(=\frac{1}{\sqrt{2}}\sqrt{\left(\sqrt{7}-1\right)^2}=\frac{\sqrt{2}\left(\sqrt{7}-1\right)}{2}\)

d) \(\sqrt{4+2\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{4+2\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{4+2\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{4+2\sqrt{3}-\sqrt{3}+1}=\sqrt{5+\sqrt{3}}\)

Bài 1:

a) Sửa đề: \(\left(\sqrt{12}+3\sqrt{5}-4\sqrt{135}\right)\cdot\sqrt{3}\)

Ta có: \(\left(\sqrt{12}+3\sqrt{5}-4\sqrt{135}\right)\cdot\sqrt{3}\)

\(=\sqrt{12}\cdot\sqrt{3}+3\sqrt{5}\cdot\sqrt{3}-4\sqrt{135}\cdot\sqrt{3}\)

\(=6+3\sqrt{15}-36\sqrt{5}\)

b) Ta có: \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)

\(=3\sqrt{28}-5\sqrt{28}+3\sqrt{112}-2\sqrt{112}\)

\(=-2\sqrt{28}+\sqrt{112}=-\sqrt{112}+\sqrt{112}=0\)

c) Ta có: \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)

\(=2\cdot4\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-3\cdot2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}\)

\(=8\sqrt{5}\cdot\sqrt{\sqrt{3}}-2\sqrt{5}\sqrt{\sqrt{3}}-6\sqrt{5}\sqrt{\sqrt{3}}\)

=0

Bài 2:

a) Ta có: \(A=\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)

\(=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\)

\(=\frac{1}{\sqrt{2}}\)

b) Ta có: \(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)

\(=\frac{\sqrt{405}+\sqrt{243}}{\sqrt{5}+\sqrt{3}}\)

\(=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)

c) Ta có: \(C=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)

\(=\frac{\sqrt{72}-\sqrt{48}+\sqrt{20}}{\sqrt{162}-\sqrt{108}+\sqrt{45}}\)

\(=\frac{2\left(\sqrt{18}-\sqrt{12}+\sqrt{5}\right)}{3\left(\sqrt{18}-\sqrt{12}+\sqrt{5}\right)}=\frac{2}{3}\)

27 tháng 7 2020

a, \(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)-\sqrt{2}\left(\sqrt{3}-1\right)\)

\(=3-1-\sqrt{6}+\sqrt{2}=2+\sqrt{2}-\sqrt{6}\)

b, \(=\sqrt{300.0,04}+2\left|\sqrt{3}-\sqrt{5}\right|\)

\(=2\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)\)

\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)

c, \(=\sqrt{196}-2\sqrt{98}+\sqrt{49}+7\sqrt{8}\)

\(=14-14\sqrt{2}+7+14\sqrt{2}=21\)

d, \(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)

\(=15\sqrt{5}+10\sqrt{5}-9\sqrt{5}=16\sqrt{5}\)

Bài 1: Rút gọn

a) Ta có: \(\left(\sqrt{3}-\sqrt{2}+1\right)\cdot\left(\sqrt{3}-1\right)\)

\(=\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-1\right)-\sqrt{2}\cdot\left(\sqrt{3}-1\right)\)

\(=3-1-\sqrt{6}+\sqrt{2}\)

\(=2-\sqrt{2}-\sqrt{6}\)

b) Ta có: \(0.2\cdot\sqrt{\left(-10\right)^2\cdot3}+2\cdot\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\)

\(=0.2\cdot\sqrt{\left(-10\right)^2}\cdot\sqrt{3}+2\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=0.2\cdot10\cdot\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)

\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)

\(=2\sqrt{5}\)

c) Ta có: \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)

\(=\sqrt{196}-2\cdot\sqrt{98}+\sqrt{49}+7\sqrt{8}\)

\(=14-\sqrt{392}+7+\sqrt{392}\)

=21

d) Ta có: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)

\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)

\(=\sqrt{5}\left(15+5\cdot2-3\cdot3\right)\)

\(=16\sqrt{5}\)

13 tháng 7 2018

\(a.\sqrt{14+4\sqrt{3}.\sqrt{2}}=\sqrt{12+2.2\sqrt{3}.\sqrt{2}+2}=2\sqrt{3}+\sqrt{2}\)

\(b.\sqrt{11-4\sqrt{3}.\sqrt{2}}=\sqrt{8-2.2\sqrt{2}.\sqrt{3}+3}=2\sqrt{2}-\sqrt{3}\)

\(c.\sqrt{28+16\sqrt{3}}=\sqrt{16+2.2\sqrt{3}.4+12}=4+2\sqrt{3}\)

\(d.\sqrt{11+4\sqrt{7}}=\sqrt{7+2.2\sqrt{7}+4}=\sqrt{7}+2\)

\(e.\sqrt{29-4\sqrt{7}}=\sqrt{28-2.2\sqrt{7}+1}=2\sqrt{7}-1\)

\(f.\sqrt{21+6\sqrt{2}.\sqrt{3}}=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}=3\sqrt{2}+\sqrt{3}\)