Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
\(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\sqrt{3}+2\sqrt{7}}\)
\(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\)
\(=\dfrac{\sqrt{2}}{2}\)
___________
\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
__________
\(\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(=\dfrac{3\cdot2\sqrt{2}-2\cdot2\sqrt{3}+2\sqrt{5}}{3\cdot3\sqrt{2}-2\cdot3\sqrt{3}+3\sqrt{5}}\)
\(=\dfrac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}\)
\(=\dfrac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}\)
\(=\dfrac{2}{3}\)
a: \(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{\sqrt{2}}{2}\)
b: \(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}=1+\sqrt{2}\)
c: \(=\dfrac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\dfrac{2}{3}\)
Bài 1:
a. Ta có \(\sqrt{\dfrac{2}{x^2}}=\dfrac{\sqrt{2}}{\left|x\right|}=\dfrac{\sqrt{2}}{x}\) ,để biểu thức có nghĩa thì \(x>0\)
b. Để biểu thức \(\sqrt{\dfrac{-3}{3x+5}}\) có nghĩa thì \(\dfrac{-3}{3x+5}\ge0\)
mà \(-3< 0\Rightarrow3x+5< 0\) \(\Rightarrow x< \dfrac{-5}{3}\)
Bài 2:
a. \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1-2}=\dfrac{-\sqrt{2}}{-1}=\sqrt{2}\)
b. \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=14-14\sqrt{2}+7+14\sqrt{2}\)
\(=21\)
c. \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)
\(=14-6\sqrt{28}+18+6\sqrt{28}\)
\(=32\)
A= \(\frac{\left(\sqrt{30}\right)^2-\left(\sqrt{29}\right)^2}{\sqrt{30}+\sqrt{29}}\)= \(\frac{1}{\sqrt{30}+\sqrt{29}}\)
B= \(\frac{\left(\sqrt{29}\right)^2-\left(\sqrt{28}\right)^2}{\sqrt{29}+\sqrt{28}}\)= \(\frac{1}{\sqrt{29}+\sqrt{28}}\)
Mà ta có \(\sqrt{30}+\sqrt{29}\)>\(\sqrt{28}+\sqrt{29}\)
Nên \(\frac{1}{\sqrt{30}+\sqrt{29}}\)<\(\frac{1}{\sqrt{29}+\sqrt{28}}\)
Suy ra A<B
a) \(1=\sqrt{1}< \sqrt{2}\)
b) \(2=\sqrt{4}>\sqrt{3}\)
c) \(6=\sqrt{36}< \sqrt{41}\)
d) \(7=\sqrt{49}>\sqrt{47}\)
e) \(2=1+1=\sqrt{1}+1< \sqrt{2}+1\)
f) \(1=2-1=\sqrt{4}-1>\sqrt{3}-1\)
g) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\)
h) \(\sqrt{3}>0>-\sqrt{12}\)
i) \(5=\sqrt{25}< \sqrt{29}\)
\(\Rightarrow-5>-\sqrt{29}\)
c) \(\sqrt{5+\sqrt{24}}=\sqrt{5+2\sqrt{6}}=\sqrt{3}+\sqrt{2}\)
d) \(\sqrt{12-\sqrt{140}}=\sqrt{12-2\sqrt{35}}=\sqrt{7}-\sqrt{5}\)
f) \(\sqrt{8-\sqrt{28}}=\sqrt{8-2\sqrt{7}}=\sqrt{7}-1\)
g) \(\sqrt{23-4\sqrt{15}}=\sqrt{23-2\cdot\sqrt{60}}=2\sqrt{5}-\sqrt{3}\)
h) \(\sqrt{9+4\sqrt{2}}=\sqrt{\left(2\sqrt{2}+1\right)^2}=2\sqrt{2}+1\)
a)\(\sqrt{8}+3< \sqrt{9}+3=3+3=6< 6+\sqrt{2}\)
b)\(14=\sqrt{196}>\sqrt{195}=\sqrt{13.15}=\sqrt{13}.\sqrt{15}\)
c) Ta có: \(\hept{\begin{cases}\sqrt{27}>\sqrt{25}=5\\\sqrt{6}>\sqrt{4}=2\end{cases}\Rightarrow\sqrt{27}+\sqrt{6}+1>5+2+1=8}\)
Mà \(\sqrt{48}< \sqrt{49}=7< 8\)
\(\Rightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
Tham khảo nhé~
Bài 1 :
\(c,\sqrt{15}.\sqrt{17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}.\)
\(16=\sqrt{16^2}\)\(\Leftrightarrow16>\sqrt{15}.\sqrt{17}\)
Câu d coi lại đề giùm :>
Bài 2 :
\(a,\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{7}}{2\sqrt{3}+2\sqrt{7}}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}\)
\(b,\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(\sqrt{2}+1\)
\(a,=27-5\sqrt{3x}\\ b,=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28=14\sqrt{2x}+28\)
a) \(\sqrt{15}< \sqrt{16}=4\)
\(\sqrt{2}< \sqrt{4}=2\)
\(\Rightarrow\sqrt{15}+\sqrt{2}< \sqrt{16}+\sqrt{4}=4+2=6\)
\(\sqrt{14}< \sqrt{16}=4\)
\(\sqrt{3}< \sqrt{9}=3\)
\(\Rightarrow\sqrt{14}+\sqrt{3}< \sqrt{16}+\sqrt{9}=4+3=7\)
\(\Leftrightarrow\sqrt{15}+\sqrt{2}< \sqrt{14}+\sqrt{3}\)( nhận thấy 6 < 7)
b) \(\sqrt{29}-\sqrt{28}=\frac{29-28}{\sqrt{29}+\sqrt{28}}=\frac{1}{\sqrt{29}+\sqrt{28}}\)
\(\sqrt{28}-\sqrt{27}=\frac{28-27}{\sqrt{28}+\sqrt{27}}=\frac{1}{\sqrt{28}+\sqrt{27}}\)
Mà \(\sqrt{29}+\sqrt{28}>\sqrt{28}+\sqrt{27}\)
\(\Rightarrow\frac{1}{\sqrt{29}+\sqrt{28}}< \frac{1}{\sqrt{28}+\sqrt{27}}\)
\(\Rightarrow\sqrt{29}-\sqrt{28}< \sqrt{28}-\sqrt{27}\)